Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (6): 24-31.doi: 10.13560/j.cnki.biotech.bull.1985.2016-1137
Previous Articles Next Articles
LI Miao, ZHOU Li-jun
Received:
2016-12-18
Online:
2017-06-26
Published:
2017-06-19
LI Miao, ZHOU Li-jun. Research Progress on the Relationship Between TRAF6 and Tumor[J]. Biotechnology Bulletin, 2017, 33(6): 24-31.
[1] Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors(TRAFs)[J]. Oncogene, 2001, 20(44):6482-6491. [2] Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling[J]. Curr Protoc Immunol, 2009, doi:10.1002/0471142735.im1109ds87. [3] Yao F, Han Q, Zhong C, et al. TRAF6 promoted the tumorigenicity of esophageal squamous cell carcinoma[J]. Tumor Biology, 2013, 34(5):3201-3207. [4] Zhang XL, Dang YW, Li P, et al. Expression of tumor necrosis factor receptor-associated factor 6 in lung cancer tissues[J]. Asian Pac J Cancer Prev, 2014, 15(24):10591-10596. [5] Sun H, Li X, Fan L, et al. TRAF6 is upregulated in colon cancer and promotes proliferation of colon cancer cells[J]. Iubmb Life, 2012, 53(9):775-782. [6] Rong Y, Wang D, Wu W, et al. TRAF6 is over-expressed in pancreatic cancer and promotes the tumorigenicity of pancreatic cancer cells[J]. Medical Oncology, 2014, 31(11):1-10. [7] Ishida T, Mizushima S, Azuma S, et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region[J]. J Biol Chem, 1996, 271(46):28745-28748. [8] Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology[J]. BioEssays, 2003, 25(11):1096-1105. [9] Lamothe B, Campos AD, Webster WK, et al. The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL[J]. J Biol Chem, 2008, 283 (36):24871-24880. [10] Xie P. TRAF molecules in cell signaling and in human diseases[J]. J Mol Signal, 2013, 8(1):1-31. [11] Chung JY, Lu M, Yin Q, et al. Structural revelations of TRAF2 function in TNF receptor signaling pathway[J]. Advances in Experimental Medicine and Biology, 2006, 597(4):93-113. [12] Hildebrand JM, Luo Z, Manske MK, et al. A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling[J]. J Exp Med, 2011, 207(12):2569-2579. [13] Hacker H, Redecke V, Blagoev B, et al. Specificity in toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6[J]. Nature, 2006, 439(7073):204-207. [14] Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner[J]. Nat Cell Biol, 2008, 10(10):1199-1207. [15] Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta[J]. Mol Cell, 2008, 31(6):918-924. [16] Sun L, Deng L, Ea CK, et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes[J]. Mol Cell, 2004, 14(3):289-301. [17] Cohen P. The TLR and IL-1 signalling network at a glance[J]. J Cell Sci, 2014, 127(11):2383-2390. [18] Cussonhermance N, Khurana S, Lee TH, et al. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-kB activation but does not contribute to interferon regulatory factor 3 activation[J]. J Biol Chem, 2005, 280(44):36560-36566. [19] Kawasaki T, Kawai T. Toll-like receptor signaling pathways[J]. Front Immunol, 2014, 5:461. [20] Arron JR, Vologodskaia M, Wong BR, et al. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine(trance)and CD40L-mediated Akt activation[J]. J Biol Chem, 2001, 276(32):30011-30017. [21] Neumann D, Lienenklaus S, Rosati O, et al. IL-1beta-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1[J]. Eur J Immunol, 2002, 32(12):3689-3698. [22] Wong BR, Besser D, Kim N, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src[J]. Mol Cell, 2000, 4(6):1041-1049. [23] Boone DL, Turer EE, Lee EG, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses[J]. Nat Immunol, 2004, 5(10):1052-1060. [24] Trompouki E, Hatzivassiliou E, Tsichritzis T, et al. CYLD is a deu-biquitinating enzyme that negatively regulates NF-kappaB activat-ion by TNFR family members[J]. Nature, 2003, 424(6950):793-796. [25] Jin W, Chang M, Paul EM, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice[J]. J Clin Invest, 2008, 118(5):1858-1866. [26] Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes[J]. Science, 2010, 327(5969):1135-1139. [27] Yoshida Y, Kumar A, Koyama Y, et al. Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism[J]. J Biol Chem, 2004, 279(3):1768-1776. [28] Wei J, Yuan Y, Jin C, et al. The ubiquitin ligase TRAF6 negatively regulates the JAK-STAT signaling pathway by binding to STAT3 and mediating its ubiquitination[J]. PLoS One, 2012, 7(11):e49567. [29] Zhang H, Hu H, Greeley N, et al. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13[J]. Nat Commun, 2013, 5:5798-5798. [30] Hindi SM, Paul PK, Saurabh D, et al. Reciprocal interaction between TRAF6 and notch signaling regulates adult myofiber regeneration upon injury[J]. Mol Cell Biol, 2012, 32(23):4833-4845. [31] Gudey SK, Sundar R, Mu Y, et al. TRAF6 stimulates the tumor-promoting effects of TGFbeta type I receptor through polyubiquitination and activation of presenilin 1[J]. Sci Signal, 2014, 7(307):ra2. [32] 邱文, 单锴, 庞蓉蓉, 等. 大鼠野生型TRAF6基因和TRAF6 shRNA表达质粒的构建及鉴定[J]. 南京医科大学学报:自然科学版, 2011, 31(10):1407-1411. [33] Shinohara M, Yun JC, Saji M, et al. Minireview:AKT in thyroid tumorigenesis and progression[J]. Endocrinology, 2007, 148(3):942-947. [34] 王敏, 王晓辉, 唐刘君, 等. TRAF6截短体的构建及其对NF-κB信号通路的影响[J]. 安徽医科大学学报, 2011, 46(11):1113-1116. [35] Lamothe B, Campos AD, Webster WK, et al. The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL[J]. J Biol Chem, 2008, 283 (36):24871-24880. [36] Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer, 2009, 9(8):537-549. [37] Heidelberg SB. Tumor Necrosis Factor Receptor-Associated Factor[M]. Berlin Heidelberg:Springer, 2005:1930. [38] Kashiwada M, Shirakata Y, Inoue JI, et al. Tumor necrosis factor receptor-associated factor 6(TRAF6)stimulates extracellular signal-regulated kinase(ERK)activity in CD40 signaling along a ras-independent pathway[J]. J Exp Med, 1998, 187(2):237-244. [39] Perkins ND. NF-κB:tumor promoter or suppressor[J]. Trends Cell Biol, 2004, 14(2):64-69. [40] Sun H, Li XB, Meng Y, et al. TRAF6 upregulates expression of HIF-1α and promotes tumor angiogenesis[J]. Cancer Research, 2013, 73(15):4950-4959. [41] Feng H, Lopez GY, Kim CK, et al. EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis[J]. J Clin Invest, 2014, 124(9):3741-3756. [42] Starczynowski DT, Lockwood WW, Deléhouzée S, et al. TRAF6 is an amplified oncogene bridging the RAS and NF-kB pathways in human lung cancer[J]. J Clin Invest, 2011, 121(10):4095-4105. [43] 林根, 黄传钟, 苏光建, 等. 下调TRAF6表达对肺癌细胞株恶性生物学行为的影响[J]. 中国肺癌杂志, 2015, 18(11):661-667. [44] Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling[J]. Genes Dev, 1999, 13(8):1015-1024. [45] Naito A, Azuma S, Tanaka S, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice[J]. Genes to Cells, 1999, 4(6):353-362. [46] Kobayashi T, Kim TS, Jacob A, et al. TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and-independent humoral immune responses[J]. Plos One, 2009, 4(3):285-289. [47] Rowland SL, Tremblay MM, Ellison JM, et al. A novel mechanism for TNFR-associated factor 6-dependent CD40 signaling[J]. J Immunol, 2007, 179(7):4645-4653. [48] Hostager BS, Haxhinasto SA, Rowland SL, et al. TRAF2-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling[J]. J Biol Chem, 2003, 278(46):45382-45390. [49] Ahonen CL, Manning EM, Erickson LD, et al. The CD40-TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells[J]. Nature Immunology, 2002, 3(5):451-456. [50] Jabara H, Laouini D, Tsitsikov E, et al. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching[J]. Immunity, 2002, 17(3):265-276. [51] Liu H, Tamashiro S, Baritaki S, et al. TRAF6 activation in multiple myeloma:a potential therapeutic target[J]. Clinical Lymphoma Myeloma and Leukemia, 2012, 12(12):155-163. [52] Chen H, Wu Y, Zhang Y, et al. Hsp70 inhibits lipoplysaccharide-induced NF-Kb activation by interaction with TRAF6 and inhibiting its ubiquitination[J]. Febs Letters, 2006, 580(13):3145-3152. [53] Chen H, Li M, Campbell RA, et al. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis[J]. Oncogene, 2006, 25(49):6520-6527. [54] Jalukar SV, Hostager BS, Bishop GA. Characterization of the roles of TNF receptor-associated factor 6(TRAF6)in CD40-mediated B lymphocyte effector functions[J]. J Immunol, 2000, 164(2):623-630. [55] Yang WL, Wang J, Chan CH, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation[J]. Science, 2009, 325(5944):1134-1138. [56] Fukushima T, Matsuzawa S, Kress CL, et al. Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor(TRAF)-mediated inflammatory responses[J]. Proceedings of the National Academy of Sciences, 2007, 104(15):6371-6376. [57] Xu G, Wen H, Zhou H, et al. Involvement of IRAKs and TRAFs in anti-beta(2)GPI/beta(2)GPI-induced tissue factor expression in THP-1 cells[J]. Thromb & Haemost, 2011, 106(6):1158-1169. [58] Aadams J, Kauffman M. Development of the proteasome inhibitor Velcade(Bortezomib)[J]. Cancer Invest, 2004, 22(2):304-311. [59] Kong FC, Zhang JQ, Zeng C, et al. Inhibitory effects of parthenolide on the activity of NF-κB in multiple myeloma via targeting TRAF6[J]. Journal of Huazhong University of Science & Technology, 2015, 35(3):343-349. [60] Liu W, Qi Y, Liu L, et al. Suppression of tumor cell proliferation by quinine via the inhibition of the tumor necrosis factor receptor-associated factor 6-AKT interaction[J]. Mol Med Rep, 2016, 14(3)2171-2179. [61] Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2[J]. J Immunol, 2009, 183(3):2150-2158. [62] Hurst DR, Edmonds MD, Scott GK, et al. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis[J]. Cancer Res, 2011, 69(69):1279-1283. |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars [J]. Biotechnology Bulletin, 2022, 38(6): 211-220. |
[3] | ZHANG Xiao-ni, WENG Yi-chun, FAN Yi-hao, WANG Xiao-juan, ZHAO Jia-yu, ZHANG Yun-long. Mito-OS-Timer:A Targeted Fluorescent Stopwatch for Monitoring Mitochondrial Oxidative Stress [J]. Biotechnology Bulletin, 2022, 38(10): 97-105. |
[4] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
[5] | LI Zhi-wen, LIU Pei-yan, CHEN Jian-song, LIAO Jin-ling, LIN Bo-rong, ZHUO Kan. Identification of Rice Genes Responding to Both the Nematode Effector MgMO237 and Its Interacting Protein OsCRRSP55 [J]. Biotechnology Bulletin, 2021, 37(7): 88-97. |
[6] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[7] | LI Ping, HU Jian-ran, SHI Bao-zhong, ZHAO Jing-lei. Extraction of Scutellaria baicalensis Polysaccharides and Its Antioxidant and Antitumor Activities [J]. Biotechnology Bulletin, 2021, 37(4): 155-163. |
[8] | YIN Xiao-meng, CAO Xue-wei, WANG Fu-jun, ZHAO Jian, ZHANG Hui-zhan. Celastrol and Apoptin Mutant Exert Synergistic Anti-tumor Effects by Enhancing Nur77-induced Apoptosis Pathway [J]. Biotechnology Bulletin, 2020, 36(7): 119-129. |
[9] | LIU Yang, CAO Xue-wei, LU Mei-ya, WANG Fu-jun, ZHAO Jian. Enhancement of Anti-tumor Effect of a Ribosome-inactivating Protein by Cell Penetrating Peptides and Saponin [J]. Biotechnology Bulletin, 2019, 35(8): 146-154. |
[10] | LI Xiao-yu, LIU Lin, XING Bing, TANG Jing, LIU Ya-ping, ZHOU Zu-ping, PU Shi-ming. Effects of Inflammation and Tumorigenesis on the Imbalance of Hematopoietic Progenitor Cells [J]. Biotechnology Bulletin, 2019, 35(8): 155-161. |
[11] | ZHOU Li-ming, LU Xin-rui, MA Sheng-wei, FANG Wei. Functional Analysis of Calcium-dependent Protein Kinase CPK14 in Pollen Tube Growth [J]. Biotechnology Bulletin, 2019, 35(6): 55-61. |
[12] | LONG Wen-lin, GUO Hui, SHENG Jie, SONG Ru-hui, XU Yao. Role of m6A RNA Methylation in Tumorigenesis and Development [J]. Biotechnology Bulletin, 2019, 35(6): 178-186. |
[13] | JIN Hong-jie, CAO Hong, LIU Hong, ZHENG Shuang, JIANG Chao. Isolation of Endophytic Fungi from Cinnamomum camphora Leaves,Screening and Identification of Biologically Active Strains [J]. Biotechnology Bulletin, 2019, 35(3): 53-58. |
[14] | LEI Lei BAO, Peng-jia, LIANG Chun-nian, CHU Min, YAN Ping. Research Progress on Fibroblast Growth Factor 5 [J]. Biotechnology Bulletin, 2019, 35(3): 144-150. |
[15] | CUI Rong-xiu, ZHANG Yi-wen, CHEN Xiao-qian, GU Cai-hong, ZHANG Quan. The Latest Research Progress on the Stress Responses of bZIP Involved in Plants [J]. Biotechnology Bulletin, 2019, 35(2): 143-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||