[1] 张雯, 王宇斐, 郭延平. 高等植物6-磷酸海藻糖信号调控研究进展[J]. 植物生理学报, 2016, 52(4):394-400. [2] 张建波, 王莎莎, 郝大海, 等. 干旱和低温胁迫影响烟草幼苗海藻糖代谢的差异比较[J]. 生物技术通报, 2015, 31(10):111-118. [3] 史健志, 等. 坛紫菜6-磷酸海藻糖合成酶(TPS)家族基因的克隆及表达特征分析[J]. 水产学报, 2015, 39(4):485-495. [4] Vandesteene L, Dijck PV. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis[J]. Plant Physiology, 2012, 160(2):884. [5] Li P, Ma S, Bohnert HJ. Coexpression characteristics of trehalose-6-phosphate phosphatase subfamily genes reveal different functions in a network context[J]. Physiol Plant, 2008, 133(3):544-556. [6] Ge LF, Chao DY, Shi M, et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J]. Planta, 2008, 228(1):191-201. [7] Vogel G, Aeschbacher RA, Müller J, et al. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant[J]. Plant Journal for Cell & Molecular Biology, 1998, 13(5):673-683. [8] Pramanik MHR, Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice[J]. Plant Molecular Biology, 2005, 58(6):751-762. [9] Nuccio ML, Wu J, Mowers R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nat Biotechnol, 2015, 33(8):862. [10] Okogbenin E, Setter TL, Ferguson M, et al. Phenotypic approaches to drought in cassava:review[J]. Front Physiol, 2013, 4:93. [11] 卢赛清, 盘欢, 马崇熙, 等. 2008年广西木薯低温冻害情况及应对措施[J]. 广西热带农业, 2009(1):21-22. [12] 丁泽红, 付莉莉, 等. 木薯 MeNCED3基因克隆、结构变异及其表达分析[J]. 生物技术通报, 2016(10):148-153. [13] Fu L, Ding Z, et al. Physiological investigation and transcriptome analysis of Polyethylene Glycol(PEG)-induced dehydration stress in cassava[J]. Int J Mol Sci, 2016, 17(3):283. [14] Wang W, Feng B, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nat Commun, 2014, 5:5110. [15] Garg AK, Kim JK, Owens TG, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proc Natl Acad Sci USA, 2002, 99(25):15898. [16] Krasensky J, et al. The redox-sensitive chloroplast trehalose-6-pho-sphate phosphatase AtTPPD regulates salt stress tolerance[J]. Antioxid Redox Signal, 2014, 21(9):1289-1304. [17] Hao GP, et al. Nucleotide variation in the NCED 3 region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress[J]. J Integr Plant Biol, 2009, 51(2):175-183. [18] Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2):221-227. |