[1] 关桂静, 赵恒燕, 王洪苏, 等. 病毒-植物互作对介体昆虫生物学特性的影响[J]. 生物技术通报, 2017, 33(4):44-50.
[2] Maris PC, Joosten NN, Goldbach RW, et al.Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis[J]. Phytopathology, 2004, 94(7):706-711.
[3] Belliure B, Janssen A, et al.Herbivore arthropods benefit from vectoring plant viruses[J]. Ecology Letters, 2005, 8(1):70-79.
[4] Schrotenboer AC, Allen MS, Malmstrom CM.Modification of native grasses for biofuel production may increase virus susceptibility[J]. Gcb Bioenergy, 2011, 3(5):360-374.
[5] 邱艳红. 黄瓜花叶病毒外壳蛋白与寄主因子的互作[D]. 北京:中国农业大学, 2015.
[6] Casteel CL, De AM, Bak A, et al.Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the Green peach aphid vector[J]. Plant Physiol, 2015, 169(1):209-218.
[7] Roossinck MJ.Plant virus metagenomics:biodiversity and ecology[J]. Annual Review of Genetics, 2012, 46:359-369.
[8] Xu P, Chen F, Mannas JP, et al.Virus infection improves drought tolerance[J]. New Phytologist, 2008, 180(4):911-921.
[9] Davis TS, BosquePerez NA, Foote NE, et al. Environmentally dependent host-pathogen and vector-pathogen interactions in the Barley yellow dwarf virus pathosystem[J]. Journal of Applied Ecology, 2015, 52(5):1392-1401.
[10] Rúa M, Pollina E, Power A, et al.The role of viruses in biological invasions:friend or foe?[J]. Curr Opin Virol, 2011, 1(1):68-72.
[11] Malmstrom CM, McCullough AJ, Johnson HA, et al. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses[J]. Oecologia, 2005, 145:153-164.
[12] Roossinck MJ.Plant virus ecology[J]. PLoS Pathogens, 2013, 9(5):e1003304.
[13] Malmstrom MC, Alexander HM.Effects of crop viruses on wild plants[J]. Curr Opin Virol, 2016, 19:30-36.
[14] Hodge S, Powell G.Conditional facilitation of an aphid vector, Acyrthosiphon pisum, by the plant pathogen, pea enation mosaic virus[J]. Journal of Insect Science, 2010, 10(1):115.
[15] Fiebig M, Poehling HM, Borgemeister C.Barley yellow dwarf virus, wheat, and Sitobion avenae:a case of trilateral interactions[J]. Entomologia Experimentalis et Applicata, 2004, 110(1):11-21.
[16] Stafforda CA, Walkerb GP, Ullmanc DE.Infection with a plant virus modifies vector feeding behavior[J]. PNAS, 2011, 108(23):9350-9355.
[17] Belliure B, Janssen A, Sabelis MW.Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation[J]. Oecologia, 2008, 156(4):797-806.
[18] 朱秀娟, 张治军, 吕要斌. 番茄斑萎病毒诱导寄主植物反应对西花蓟马生物学特性的影响[C]. 中国植物保护学会2010 年学术年会论文集, 2010.
[19] Chen G, Pan H, Xie W, et al.Virus infection of a weed increases vector attraction to and vector fitness on the weed[J]. Sci Rep, 2013, 3:2253.
[20] 张玉秀. 西花蓟马在不同寄主植物上对番茄斑萎病毒传播效率的研究[D]. 南京:南京农业大学, 2013.
[21] Belliure B, W. Sabelis M, Janssen A. Vector and virus induce plant responses that benefit a non-vector herbivore[J]. Basic and Applied Ecology, 2010, 11(2):162-169.
[22] Mouttet R, Bearez P, Thomas C, et al.Phytophagous arthropods and a pathogen sharing a host plant:evidence for indirect plant-mediated interactions[J]. PLoS One, 2011, 6(5):e18840.
[23] Lewsey MG, Murphy AM, MacLean D, et al. Disruption of two def- ensive signaling pathways by a viral RNA silencing suppressor[J]. Mol Plant Microbe Interact, 2010, 23(7):835-845.
[24] Zhang T, Luan JB, Qi JF, et al.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogeni-city factor[J]. Mol Ecol, 2012, 21(5):1294-1304.
[25] Liu B, Preisser EL, Chu D, et al.Multiple forms of vector manipulation by a plant-infecting virus:Bemisia tabaci and Tomato yellow leaf curl virus[J]. Journal of Virology, 2013, 87(9):4929-4937.
[26] 何晓婵. 两种水稻黑条矮缩病毒对稻飞虱及其主要天敌的影响[D]. 南京:南京农业大学, 2013.
[27] 唐雪飞. 瓜类褪绿黄化病毒对介体烟粉虱生物学特性的影响[D]. 郑州:河南农业大学, 2018.
[28] 马丽娜, 刘映红. 不同病毒接种烟株对烟蚜生长发育和繁殖的影响[J]. 植物保护学报, 2007, 34(1):10-14.
[29] de Oliveira CF, Long EY, Finke DL. A negative effect of a pathogen on its vector? A plant pathogen increases the vulnerability of its vector to attack by natural enemies[J]. Oecologia, 2014, 174(4):1169-1177.
[30] 陈倩, 郑立敏, 王海涛, 等. 水稻矮缩病毒诱导黑尾叶蝉细胞凋亡的机制研究[C]. 中国植物病理学会2016年学术年会论文集, 2016.
[31] Xia WQ, Liang Y, Chi Y, et al.Intracellular trafficking of begomoviruses in the midgut cells of their insect vector[J]. PLoS Pathogens, 2018, 14(1):e1006866.
[32] Shrestha D, Mcauslane HJ, Adkins ST, et al.Host-mediated effects of semipersistently transmitted squash vein yellowing virus on sweetpotato whitefly(Hemiptera:Aleyrodidae)behavior and fitness[J]. J Econ Entomol, 2017, 110(4):1433-1441.
[33] Rajabaskar D, Bosque-Pérez NA.Preference by a virus vector for infected plants is reversed after virus acquisition[J]. Virus Research, 2014, 186:32-37.
[34] Abe H, Tomitaka Y, Shimoda T, et al.Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus[J]. Plant and Cell Physiology, 2012, 53(1):204-212.
[35] Boquel S, Delayen C, Couty A, et al.Modulation of aphid vector activity by potato virus Y on in vitro potato plants[J]. Plant Disease, 2012, 96(1):82-86.
[36] Su Q, Preisser EL, Zhou XM, et al.Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors[J]. J Econ Entomol, 2015, 108(1):11-19.
[37] Hodge S, Powell G.Do plant viruses facilitate their aphid vectors by inducing symptoms that alter their behavior and performance?[J]. Environ Entomol, 2008, 7:1573-1581.
[38] Ponzio C, Weldegergis BT, Dicke M, et al.Compatible and incompatible pathogen-plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps[J]. Functional Ecology, 2016, 30(11):1779-1789.
[39] Mauck K, Bosque-Pérez NA, Eigenbrode SD, et al.Transmission mechanisms shape pathogen effects on host-vector interactions:evidence from plant viruses[J]. Functional Ecology, 2012, 26(5):1162-1175.
[40] Werner BJ, Mowry TM, Bosque-Pérez NA, et al.Changes in green peach aphid responses to potato leafroll virus—induced volatiles emitted during disease progression[J]. Environ Entomol, 2009, 38(5):1429-1438.
[41] Mauck KE, Moraes CMD, Mescher. MC.Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts[J]. Proc Natl Acad Sci, 2010, 107(8):3600-3605.
[42] 卢少华, 李静静, 刘明杨, 等. 烟粉虱B型和Q型竞争能力的室内比较分析[J]. 中国农业科学, 2015, 48(7):1339-1347.
[43] Su Q, Mescher MC, Wang S, et al.Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore[J]. Plant Cell Environ, 2016, 39(3):597-607.
[44] Paliwal YC.Relationship of wheat streak mosaic and barley stripe mosaic viruses to vector and nonvector eriophyid mites[J]. Archives of Virology, 1980, 63(2):123-132.
[45] Filho FMdA, Stavisky J, Reitz SR, et al. Midgut infection by tomato spotted wilt virus and vector incompetence of Frankliniella tritici[J]. J Appl Entomol, 2005, 129(9-10):548-550.
[46] Smith KM.Some notes on the relationship of plant viruses with vector and non-vector insects[J]. Parasitology, 1941, 33(1):110-116.
[47] Bandla MD, Campbell LR, Ullman DE, et al.Interaction of tomato spotted wilt tospovirus(TSWV)glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV[J]. Phytopathology, 1998, 88(2):98-104.
[48] Jia D, Chen H, Mao Q, et al.Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus[J]. Virus Research, 2012, 167(2):404-408.
[49] Chen G, Su Q, Shi X, et al.Odor, not performance, dictates Bemisia tabaci's selection between healthy and virus infected plants[J]. Frontiers in Physiology, 2017, 8:146.
[50] Pan H, Chen G, Li F, et al.Tomato spotted wilt virus infection reduces the fitness of a nonvector herbivore on pepper[J]. J Econ Entomol, 2013, 106(2):924-928.
[51] Saad KA, Roff MN, Hallett RH, et al.Effects of Cucumber mosaic virus-infected chilli plants on non-vector Bemisia tabaci(Hemiptera:Aleyrodidae)[J]. Insect Science, 2019, 26(1):76-85.
[52] 何晓婵, 徐红星, 周小军, 等. 植物病毒对介体和非介体节肢动物及其天敌的影响研究进展[J]. 应用生态学报, 2014, 25(5):1525-1532.
[53] Groen SC, Sanjie J, Murphy AM, et al.Virus infection of plants alters pollinator preference:A payback for susceptible hosts?[J]. PLoS Pathogens, 2016, 12(8):e1005790.
[54] Peñaflor MFG, Mauck KE, Alves KJ, et al.Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host-vector interactions[J]. Functional Ecology, 2016, 30(10):1648-1659.
[55] He WB, Li J, Liu SS.Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus[J]. Scientific Reports, 2015, 5:7682.
[56] Rajabaskar D, Bosque-Pérez, Nilsa A, et al.Preference by a virus vector for infected plants is reversed after virus acquisition[J]. Virus Research, 2014, 186:32-37.
[57] Turlings TC, Wäckers F.Recruitment of predators and parasitoids by herbivore-injuried plants[J]. Advances in Insect Chemical Ecology, 2004, 2:21-75.
[58] Mauck KE, Smyers E, de Moraes CM, et al. Virus infection influences host plant interactions with non-vector herbivores and predators[J]. Functional Ecology, 2015, 25(9):662-673.
[59] Mauck KE, Moraes CM, Mescher MC.Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani[J]. Scientific Reports, 2015, 5:10963.
[60] Hodge S, Hardie J, Powell G.Parasitoids aid dispersal of a nonpersistently transmitted plant virus by disturbing the aphid vector[J]. Agric For Entomol, 2011, 13(1):83-88.
[61] Xavier M, Pelz-Stelinski KS, Stelinski LL.Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vec-tor[J]. Front Ecol Evol, 2014. doi:10.3389/fevo.2014.00008.
[62] Malmstrom CM, Melcher U, Bosque-Perez NA.The expanding field of plant virus ecology:historical foundations, knowledge gaps, and research directions[J]. Virus Res, 2011, 159(2):84-94.
[63] 鲁瑞芳, 李为民, 彭学贤. 植物病毒协生作用及其分子机理[J]. 中国病毒学, 2001, 16(3):7.
[64] Syller J.Facilitative and antagonistic interactions between plant viruses in mixed infections[J]. Molecular Plant Pathology, 2012, 13(2):204-216.
[65] Abrahamian P, Sobh H, et al.Co-infection of two criniviruses and a begomovirus enhances the disease severity in cucumber[J]. European Journal of Plant Pathology, 2015, 142(3):521-530.
[66] Zhang XF, Guo J, Zhang X, et al.Random plant viral variants vttain temporal advantages during systemic infections and in turn resist other variants of the same virus[J]. Sci Rep, 2015, 5:15346.
[67] Chewachong GM, Miller SA, Blakeslee JJ, et al.Generation of an attenuated, cross-protective Pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein[J]. Phytopathology, 2015, 105(1):126-134.
[68] 田文会, 曹寿先, 魏艳敏, 等. 黄瓜花叶病毒对烟草花叶病毒的干扰作用的研究初报[J]. 植物病理学报, 1987, 1:003.
[69] 崔伯法, 王洪祥, 翁法令. 交叉保护在植物病毒病害防治中作用的概述[J]. 中国生物防治学报, 1998, 14(2):75-77.
[70] Varughese J, Griffiths E.Effect of barley yellow dwarf virus on susceptibility of barley cultivars to net blotch(Pyrenophora teres)and leaf blotch(Rhynchosporium secalis)[J]. Plant Pathology, 1983, 32(4):435-440.
[71] Helton AW.Sustained Cytosporaresistance in Italian prune cultivars infected with Prunus ringspot virus[J]. Phytopathology, 1974, 64:1410-1413.
[72] Diaz-Polanco C, Smith SH, Hancock JG.Effect of virus infection on stem rot of squash caused by Fusarium solani f. sp. cucurbitae[J]. Phytopathology, 1969, 59:18-22.
[73] Hafer N, Milinski M.Cooperation or conflict:host manipulation in multiple infections[M]. Host Manipulations by Parasites and Viruses, 2015. |