Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (11): 169-178.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0499
Previous Articles Next Articles
LI E1, HU Hua-ran1, LI Jiao-nan1, DU Guang-hui2, LIU Fei-hu1, 2
Received:
2019-06-06
Online:
2019-11-26
Published:
2019-11-19
LI E, HU Hua-ran, LI Jiao-nan, DU Guang-hui, LIU Fei-hu. Research Progress on Endophytic Fungi Improving Plant Resistance to Salt Stress[J]. Biotechnology Bulletin, 2019, 35(11): 169-178.
[1] 张璐, 张倩, 叶宝兴. 盐胁迫下丛枝菌根真菌(AMF)对紫花苜蓿生长的影响[J]. 山东农业科学, 2010, 3:32-37. [2] 巩彪. 氮信号调控番茄盐碱适应机理及SAMS和GSNOR基因的功能研究[D]. 泰安:山东农业大学, 2014. [3] 杜浩, 张彬, 黄萍, 等. 4个甜高粱品种(系)发芽期耐盐性比较分析[J]. 江苏农业科学, 2018, 46(12):63-66. [4] 周和平, 张立新, 禹锋, 等. 我国盐碱地改良技术综述及展望[J]. 现代农业科技, 2007(11):159-161. [5] 买买提·阿扎提, 艾力克木·卡德尔, 吐尔逊·哈斯木. 土壤盐渍化及其治理措施研究综述[J]. 环境科学与管理, 2008, 33(5):29-33. [6] Tuteja N.Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007, 428:419-438. [7] Guo B, Wang Y, Sun X, et al.Bioactive natural products from endophytes:A review[J]. Applied Biochemistry and Microbiology, 2008, 44(2):136-142. [8] 武佳蕊, 王宏伟, 谢星光, 等. 植物内生菌影响土壤微生物区系的研究进展[J]. 中国生态农业学报, 2014, 22(11):1259-1266. [9] Carroll G.Fungal endophytes in stems and leaves:from latent pathogen to mutualistic symbiont[J]. Ecology, 1988, 69(1):2-9. [10] Rodriguez RJ, White Jr JF, Arnold AE, et al.Fungal endophytes:diversity and functional roles[J]. New Phytologist, 2009, 182(2):314-330. [11] Stierle A, Strobel G, Stierle D.Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science, 1993, 260(5105):214-216. [12] 林燕青, 洪伟. 植物内生真菌研究及应用前景[J]. 福建林业科技, 2012, 39(3):186-193. [13] Zhao J, Shan T, Mou Y, et al.Plant-derived bioactive compounds produced by endophytic fungi[J]. Mini Reviews in Medicinal Chemistry, 2011, 11(2):159-168. [14] Maciá-Vicente JG. Ferraro V, Burruano S, et al.Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient[J]. Microbial Ecology, 2012, 64(3):668-679. [15] 袁志林, 章初龙, 林福呈. 植物与内生真菌互作的生理与分子机制研究进展[J]. 生态学报, 2008, 28(9):4430-4439. [16] Frank B.On the nutritional dependence of certain trees on root symbiosis with belowground fungi[J]. Mycorrhiza, 2005, 15(4):267-275. [17] Bach Allen E, Cunningham GL.Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels[J]. New Phytologist, 1983, 93(2):227-236. [18] 刘润进, 焦惠, 李岩, 等. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2009, 20(9):2301-2307. [19] Trimble MR, Knowles NR.Influence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber(Cucumis sativus L.)plants during establishment[J]. Canadian Journal of Plant Science, 1995, 75(1):239-250. [20] 李丽丽. 旋覆花根围优势AM真菌对白花三叶草耐盐碱特性影响研究[D]. 哈尔滨:东北林业大学, 2016. [21] Al-Karaki GN.Growth of mycorrhizal tomato and mineral acquisition under salt stress[J]. Mycorrhiza, 2000, 10(2):51-54. [22] Allen EB, Cunningham GL.Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels[J]. New Phytologist, 1983, 93(2):227-236. [23] Pfetffer CM, Bloss HE.Growth and nutrition of guayule(Parthenium argentatum)in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization[J]. New Phytologist, 1988, 108(3):315-321. [24] Ojala JC, Jarrell WM, Menge JA, et al.Influence of mycorrhizal fungi on the mineral nutrition and tield of onion in saline soil 1[J]. Agronomy Journal, 1983, 75(2):255-259. [25] Poss JA, Pond E, Menge JA, et al.Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil, 1985, 88(3):307-319. [26] Duke ER, Johnson CR, Koch KE.Accumulation of phosphorus, dry matter and betaine during Nacl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves[J]. New Phytologist, 1986, 104(4):583-590. [27] Hartmond U, Schaesberg NV, Graham JH, et al.Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings[J]. Plant and Soil, 1987, 104(1):37-43. [28] Levy Y, Dodd J, Krikun J.Effect of irrigation, water salinity and rootstock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots[J]. New Phytologist, 1983, 95(3):397-403. [29] Rosendahl CN, Rosendahl S.Influence of vesicular-arbuscular mycorrhizal fungi(Glomus spp. )on the response of cucumber(Cucumis sativus L.)to salt stress[J]. Environmental and Experimental Botany, 1991, 31(3):313-318. [30] 冯固, 李晓林, 张福锁, 等. VA菌根提高植物耐盐性研究进展[J]. 西北农林科技大学学报, 1999, 27(3):94-100. [31] Verma S, Varma A, Rexer KH, et al.Piriformospora indica, gen. et sp. nov. , a new root-colonizing fungus[J]. Mycologia, 1998, 90(5):896-903. [32] Waller F, Achatz B, Baltruschat H, et al.The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. Proceedings of the National Academy of Sciences of the USA, 2005, 102(38):13386-13391. [33] 惠非琼. 印度梨形孢对烟草耐盐、抗旱及重金属作用及机理的初步研究[D]. 杭州:浙江大学, 2014. [34] 李亮, 武洪庆, 马朝阳, 等. 印度梨形孢促进蒺藜苜蓿生长及其提高耐盐性研究[J]. 微生物学通报, 2015, 42(8):1492-1500. [35] 汪云叶, 童虹宇, 周小雪, 等. 印度梨形孢对墨西哥鼠尾草抗盐性的影响[J]. 西南大学学报:自然科学版, 2018, 40(3):54-59. [36] Gallaud I.Etudes surles mycorrhizas endotrophes[J]. Review of General Botany, 1905, 17:479-500. [37] Melin E.On the mycorrhizas of Pinus silvestris L. and Picea abies Karst:a preliminary note[J]. Journal of Ecology, 1922, 9(2):254-257. [38] Jumpponen ARI, Trappe JM.Dark septate endophytes:A review of facultative biotrophic root-colonizing fungi[J]. New Phytolo-gist, 1998, 140(2):295-310. [39] 刘茂军, 张兴涛, 赵之伟. 深色有隔内生真菌(DSE)研究进展[J]. 菌物学报, 2009, 28(6):888-894. [40] 邓勋, 宋小双, 尹大川, 等. 深色有隔内生真菌提高宿主植物抗逆性的研究进展[J]. 安徽农业科学, 2015, 43(31):10-11. [41] Narisawa K, Hambleton S, Currah RS.Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae(Chaetothyriales)obtained from some forest soil samples in Canada using bait plants[J]. Mycoscience, 2007, 48(5):274-281. [42] Wilson BJ, Addy HD, Tsuneda A, et al.Phialocephala sphaeroides sp. nov. , a new species among the dark septate endophytes from a boreal wetland in Canada[J]. Canadian Journal of Botany, 2004, 82(5):607-617. [43] Wagg C, Pautler M, Massicotte HB, et al.The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae[J]. Mycorrhiza, 2008, 18(2):103-110. [44] Pan X, Qin Y, Yuan Z.Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity[J]. Symbiosis, 2018, 76(2):109-116. [45] Redman RS, Kim YO, Woodward CJDA, et al.Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis:a strategy for mitigating impacts of climate change[J]. PLoS One, 2011, 6(7):e14823. [46] 缑小媛. 内生真菌对醉马草耐盐性的影响研究[D]. 兰州:兰州大学, 2007. [47] 王正凤. 内生真菌对野大麦耐盐性影响的研究[D]. 兰州:兰州大学, 2009. [48] Mastouri F, Björkman T, Harman GE.Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J]. Phytopathology, 2010, 100(11):1213-1221. [49] Khan AL, Hamayun M, Ahmad N, et al.Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max L.[J]. Journal of Microbiology and Biotechnology, 2011, 21(9):893-902. [50] 钮旭光, 宋立超, 韩梅, 等. 盐生植物翅碱蓬的内生真菌多样性分析[J]. 微生物学通报, 2012, 39(10):1388-1395. [51] 范黎. 盐性条件下植物内生真菌多样性及其生态学功能研究[J]. 微生物学通报, 2014, 41(8):1710. [52] 陈亚平. 耐盐碱植物内生真菌的分离鉴定及促进作物耐盐菌株的筛选[D]. 杭州:浙江大学, 2014. [53] 侯姣姣, 孙涛, 余仲东, 等. 盐胁迫下内生真菌对国槐幼苗生长及生理的影响[J]. 浙江农林大学学报, 2017, 34(2):294-300. [54] 吴曰福, 顾爱星, 王洪凯. 碱蓬根系嗜盐耐盐真菌的分离与鉴定[J]. 浙江农业学报, 2018, 30(4):649-655. [55] Max X, Zheng J, Zhang X, et al.Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus(Caryophyllaceae)by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system[J]. Frontiers in Plant Science, 2017, 8:600. [56] Keyster M, Klein A, Ludidi N.Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide[J]. Plant Signaling & Behavior, 2012, 7(3):349-360. [57] Pereira SIA, Moreira H, Argyras K, et al.Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganism[J]. Applied Soil Ecology, 2016, 105:36-47. [58] Hashem A, Abd-allah EF, Alqarawi AA, et al. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of acacia gerrardii under salt stress[J]. Frontiers in Microbiology, 2016, 7(1089):1-2. [59] Abdelaziz ME, Kim D, Ali S, et al.The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science, 2017, 263:107-115. [60] Adiku SGK, Renger M, Wessolek G, et al.Simulation of the dry matter production and seed yield of common beans under varying soil water and salinity conditions[J]. Agricultural Water Management, 2001, 47(1):55-68. [61] Porcel R, Aroca R, Ruiz-Lozano JM.Salinity stress alleviation using arbuscular mycorrhizal fungi. A review[J]. Agronomy for Sustainable Development, 2012, 32(1):181-200. [62] Qin Y, Pan X, Kubicek C, et al.Diverse plant-associated pleosporalean fungi from saline areas:ecological tolerance and nitrogen-status dependent effects on plant growth[J]. Frontiers in Microbiology, 2017, 8:158. [63] Morgan JM.Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 1984, 35(1):299-319. [64] Hoekstra FA, Golovina EA, Buitink J.Mechanisms of plant desiccation tolerance[J]. Trends in Plant Sciences, 2001, 6(9):431-438. [65] Evelin H, Kapoor R, Giri B.Arbuscular mycorrhizal fungi in alleviation of salt stress:a review[J]. Annals of Botany, 2009, 104(7):1263-1280. [66] Jindal V, Atwal A, Sekhon BS, et al.Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 3(1):475-481. [67] 任安芝, 高玉葆, 章瑾, 等. 内生真菌感染对黑麦草抗盐性的影响[J]. 生态学报, 2006, 26(6):1750-1757. [68] 付艳平, 辛树权, 高扬. NaCl溶液胁迫下促生菌对向日葵种子生长的影响[J]. 安徽农业科学, 2011, 39(21):12677-12680. [69] Al-Garni SMS.Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis[J]. American-Eurasian Journal of Agricultural and Environmental Science, 2006, 1(2):119-126. [70] Garg N, Bhandari P.Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity[J]. Protoplasma, 2016, 253(5):1325-1345. [71] Brugnoli E, Björkman O.Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy[J]. Planta, 1992, 187(3):335-347. [72] Chaves MM, Flexas J, Pinheiro C.Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4):551-560. [73] Malinowski DP, Belesky DP.Adaptations of endophyte-infected cool-season grasses to environmental stresses:mechanisms of drought and mineral stress tolerance[J]. Crop Science, 2000, 40(4):923-940. [74] Azad K, Kaminskyj S.A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth[J]. Symbiosis, 2016, 68(1):73-78. [75] Ghorbani A, Razavi SM, Ghasemi VO, et al.Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on the growth, gas exchange and chlorophyll fluorescence in tomato(Solanum lycopersicum L.)[J]. Plant Biology, 2018, 20(4):729-736. [76] Boo YC, Jung J.Water deficit-induced oxidative stress and antioxidative defenses in rice plants[J]. Journal of Plant Physiology, 1999, 155(2):255-261. [77] Sharma P, Dubey RS.Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum[J]. Plant Cell Reports, 2007, 26(11):2027-2038. [78] Miller G, Shulaev V, Mittler R.Reactive oxygen signaling and abiotic stress[J]. Physiologia Plantarum, 2008, 133(3):481-489. [79] Pandey R, Garg N.High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan(L.)Millsp. genotypes grown under salinity stress[J]. Mycorrhiza, 2017, 27(7):669-682. [80] 王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响[J]. 生态学报, 2018, 38(6):2187-2194. [81] Baltruschat H, Fodor J, Harrach BD, et al.Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants[J]. New Phytologist, 2008, 180(2):501-510. [82] 张爱娣, 郑仰雄, 黄东兵. 丛枝菌根真菌对大叶女贞耐盐性的影响[J]. 江苏农业科学, 2018, 46(19):137-141. [83] 王娜, 陈飞, 岳英男, 等. 松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J]. 江苏农业科学, 2017, 45(24):147-148. [84] Sirrenberg A, Göbel C, Grond S, et al.Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4):581-589. [85] Ghaffari MR, Ghabooli M, Khatabi B, et al.Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley[J]. Plant Molecular Biology, 2016, 90(6):699-717. [86] Barazani O, von Dahl CC, Baldwin IT. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling[J]. Plant Physiology, 2007, 144(2):1223-1232 [87] 胡春霞. 氮、磷和色氨酸对醉马草内生真菌共生体生长及麦角生物碱含量的影响[D]. 兰州:兰州大学, 2013. [88] Schardl CL, Leuchtmann A, Spiering MJ.Symbioses of grasses with seedborne fungal endophytes[J]. Annual Review of Plant Biology, 2004, 55(55):315-340. [89] Sherameti I, Shahollari B, Venus Y, et al.The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28):26241-26247. [90] Gasoni L. Gurfinkel BSD.The endophyte Cladorrhinum foecundissimum in cotton roots:phosphorus uptake and host growth[J]. Mycological Research, 1997, 101(7):867-870. [91] Bartholdy BA, Berreck M, Haselwandter K.Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. Biometals, 2001, 14(1):33-42. [92] Malla R, Prasad R, Kumari R, et al.Phosphorus solubilizing symbiotic fungus:Piriformospora indica[J]. Endocytobiosis and Cell Research, 2004, 15(2):579-600. [93] Maccheron JW, Azevedo JL.Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation[J]. Journal of General and Applied Microbiology, 1998, 44(6):381. [94] Lévy J, Bres C, Geurts R, et al.A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004, 303(5662):1361-1364. [95] Tanaka A, Christensen MJ, Takemoto D, et al.Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction[J]. The Plant Cell, 2006, 18(4):1052-1066. [96] Imaizumi-Anraku H, Takeda N, Charpentier M, et al.Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots[J]. Nature, 2005, 433(7025):527-531. [97] Saito K, Yoshikawa M, Yano K, et al.Nucleoporin85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus[J]. The Plant Cell, 2007, 19(2):610-624. [98] Shahollari B, Vadassery J, Varma A, et al.A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana[J]. Plant J, 2007, 50(1):1-13. [99] 惠非琼, 彭兵, 楼兵干, 等. 印度梨形孢通过促进渗透调节物质的合成和诱导抗逆相关基因的表达提高烟草耐盐性[J]. 农业生物技术学报, 2014, 22(2):168-176. [100] 李亮, 陈希, 王奋, 等. 印度梨形孢通过激活抗氧化物酶活性及诱导P5CS基因表达提高紫花苜蓿耐盐性[J]. 河北工业大学学报, 2016, 45(4):29-36. [101] Ouziad F, Wilde P, Schmelzer E, et al.Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J]. Environmental and Experimental Botany, 2006, 57(1):177-186. [102] Aroca R, Porcel R. Ruiz-Lozano JM.How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses[J]. New Phytologist, 2007, 173(4):808-816. [103] 陈水红, 曹莹, 陈泰祥, 等. 内生真菌提高禾草抗盐碱性研究进展[J]. 生物技术通报, 2018, 34(4):35-42. [104] Saikkonen K, Ion D, Gyllenberg M.The persistence of vertically transmitted fungi in grass metapopulations[J]. Proceedings of the Royal Society Biological Sciences of the USA, 2002, 269(1498):1397-1403. [105] Faeth SH, Gardner DR, Hayes CJ, et al.Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte neotyphodium[J]. Journal of Chemical Ecology, 2006, 32(2):307-324. [106] Faeth SH, Sullivan TJ.Mutualistic asexual endophytes in native grass are usually parasitic[J]. The American Naturalist, 2003, 161(2):310-325. [107] 李娇, 张宝龙, 赵颖, 等. 内生菌对提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2014, 27(4):14-18. |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[10] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[11] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[12] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[13] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[14] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[15] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||