Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (9): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0614
WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai
Received:
2019-07-08
Online:
2019-09-26
Published:
2019-09-16
WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Advances on Properties,Production,Purification and Immobilization of Fungal Laccase[J]. Biotechnology Bulletin, 2019, 35(9): 1-10.
[1] 刘辉, 韩振亚, 苏焕斌, 等. 漆酶及其产生菌应用研究进展[J]. 广东化工, 2016, 43(7):100-101. [2] Yoshida H. LXIII. -Chemistry of lacquer(Urushi). Part I. Communication from the Chemical Society of Tokio[J]. Journal of the Chemical Society, Transactions, 1883, 43:472-486. [3] Bertrand G. Sur le latex de l’arbre à laque[J]. Comptes Rendus Hebdomadaires des Séances de I'Académie des Sciences(Paris), 1894, 118:1215-1218. [4] 万云洋, 杜予民. 漆酶来源与绿色化学应用[J]. 林产化学与工业, 2008, 28(6):100-108. [5] 甘主镐. 生漆的化学[M]. 北京:科学出版社, 1984. [6] Liu ZG, Wang HH, Xue CB.Molecular identification and enzymatic properties of laccase2 from the diamondback moth Plutella xylostella(Lepidoptera:Plutellidae)[J]. Journal of Integrative Agriculture, 2018, 17(10):2310-2319. [7] 邓寒梅, 邵可, 梁家豪, 等. 漆酶的来源及固定化漆酶载体研究进展[J]. 生物技术通报, 2017, 33(6):10-15. [8] Wang SN, Chen QJ, Zhu MJ, et al.An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization[J]. Biochimie, 2018, 148:46-54. [9] Shanmugam S, Ulaganathan P, Swaminathan K, et al.Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase:Degradation pathway and product analysis[J]. International Biodeterioration & Biodegradation, 2017, 125:258-268. [10] Kolomytseva MP, Myasoedova NM, Chernykh AM, et al.Laccase isoform diversity in basidiomycete Lentinus strigosus 1566:Potential for phenylpropanoid polymerization[J]. International Journal of Biological Macromolecules, 2019, 137:1199-1210. [11] Zhuo R, Zhang JW, Yu HB, et al.The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways[J]. Chemosphere, 2019, 234:733-745. [12] Zerva A, Koutroufini E, Kostopoulou I, et al.A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2', 3, 4-trihydroxychalcone[J]. New Biotechnology, 2019, 49:10-18. [13] Blánquez A, Rodríguez J, Brissos V, et al.Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system[J]. Saudi Journal of Biological Sciences, 2019, 26:913-920. [14] Olajuyigbe FM, Fatokun CO.Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05[J]. International Journal of Biological Macromolecules, 2017, 94:535-543. [15] Khodaverdian S, Dabirmanesh B, Heydari A, et al.Activity, stability and structure of laccase in betaine based natural deep eutectic solvents[J]. International Journal of Biological Macromolecules, 2018, 107:2574-2579. [16] Britos CN, Gianolini JE, Portillo H, et al.Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase[J]. Biocatalysis and Agricultural Biotechnology, 2018, 14:221-227. [17] 李晨歌. 漆酶及其应用研究进展[J]. 陇东学院学报, 2017, 28(1):62-66. [18] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(4):24-34. [19] Zhu Y, Ouyang XP, Zhao Y, et al.Oxidative depolymerization of lignin improved by enzymolysis pretreatment with laccase[J]. Journal of Energy Chemistry, 2018, 27:801-805. [20] Paramjeet S, Manasa P, Korrapati N.Biofuels:production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues[J]. Biocatalysis and Agricultural Biotechnology, 2018, 14:57-71. [21] Naghdi M, Taheran M, Brar SK, et al.Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes[J]. Environmental Pollution, 2018, 234:190-213. [22] Isaschar-Ovdat S, Fishman A.Crosslinking of food proteins mediated by oxidative enzymes-a review[J]. Trends in Food Science & Technology, 2018, 72:134-143. [23] Barrios-Estrada C, Rostro-Alanis MJ, Muñoz-Gutiérrez BD, et al.Emergent contaminants:endocrine disruptors and their laccase-assisted degradation-a review[J]. Science of the Total Environment, 2018, 612:1516-1531. [24] Brémond U, de Buyer R, Steyer JP, et al. Biological pretreatments of biomass for improving biogas production:an overview from lab scale to full-scale[J]. Renewable and Sustainable Energy Reviews, 2018, 90:583-604. [25] Quintanar L, Yoon J, Aznar CP, et al.Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase:nature of its coordination unsaturation[J]. Journal of the American Chemical Society, 2005, 127(40):13832-13845. [26] Solomon EI, Sundaram UM, Machonkin TE.Multicopper oxidases and oxygenases[J]. Chemical Reviews, 1996, 96:2563-2605. [27] Garavaglia S, Cambria MT, Miglio M, et al.The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair[J]. Journal of Molecular Biology, 2004, 342(5):1519-1531. [28] Morpurgo L, Agostinelli E, Senepa M, et al.A room temperature electron paramagnetic resonance study of native and fluoride-reacted Vietnamese and Japanese lacquer-tree laccases:differences from liquid-nitrogen spectra[J]. Journal of Inorganic Biochemistry, 1985, 24(1):1-8. [29] 李平, 易弋, 邓春, 等. 漆酶的结构及其应用研究进展[J]. 中国酿造, 2016, 35(5):10-15. [30] 曹明乐, 张海波, 黄峰, 等. 漆酶的研究进展[J]. 山东林业科技, 2012, 42(3):106-115. [31] 吴振强, 秦鹏, 王菊芳, 等. 产耐温漆酶菌的筛选及培养基优化[J]. 陕西科技大学学报, 2009, 27(1):68-73. [32] 葛飞, 张慧敏, 龚倩, 等. 杏鲍菇产漆酶培养条件优化及其对菲的降解特性研究[J]. 食品工业科技, 2014, 35(14):221-225. [33] 夏文静, 周学, 周燕, 等. 杏鲍菇重组漆酶对不同酚类污染物的降解研究[J]. 食品工业科技, 2017, 38(24):99-103. [34] Baldrian P.Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242. [35] 范文霞, 蔡友华, 刘学铭, 等. 毛云芝菌漆酶的分离纯化和性质研究[J]. 食品科学, 2008, 29(12):422-425. [36] 王宜磊, 周长路. 多孔菌Polyporus W38漆酶的纯化及性质研究[J]. 微生物学杂志, 2002, 22(6):28-29. [37] 宋丽丽, 张志平, 王光路, 等. 硬毛粗盖孔菌产漆酶条件优化及其对日落黄的降解作用[J]. 食品工业科技, 2019, 40(10):133-138. [38] 王辉, 陈广胜, 韩松. 添加天然物质对白腐菌糙皮侧耳菌产漆酶的影响[J]. 东北林业大学学报, 2013, 41(10):112-115. [39] 张楠, 邸明伟. pH值对漆酶活化玉米秸秆木质素的影响[J]. 粘接, 2015, 6:42-46. [40] Zhuo R, Yuan P, Yang Y, et al.Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase[J]. Biochemical Engineering Journal, 2017, 117:62-72. [41] Niladevi KN, Jacob N, Prema P.Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus:purification and characterization[J]. Process Biochemistry, 2008, 43(6):654-660. [42] Othman AM, Elsayed MA, Elshafei AM, et al.Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization[J]. International Journal of Biological Macromolecules, 2018, 113:1142-1148. [43] Murugesan K, Kim YM, Jeon JR, et al.Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum[J]. Journal of Hazardous Materials, 2009, 168(1):523-529. [44] Agrawal K, Chaturvedi V, Verma P.Fungal laccase discovered but yet undiscovered[J]. Bioresources and Bioprocessing, 2018, 5:4. [45] Lin XJ, Wu ZM, Zhang CY, et al.Enzymatic pulping of lignocellulosic biomass[J]. Industrial Crops & Products, 2018, 120:16-24. [46] Guebitz GM, Nyanhongo GS.Enzymes as green catalysts and interactive biomolecules in wound dressing hydrogels[J]. Trends in Biotechnology, 2018, 36(10):1040-1053. [47] Tonin F, Melis R, Cordes A, et al.Comparison of different microbial laccases as tools for industrial uses[J]. New Biotechnology, 2016, 33(3):387-398. [48] de Lima DP, dos Santos EA, Marques MR, et al. Fungal bioremediation of pollutant aromatic amines[J]. Current Opinion in Green and Sustainable Chemistry, 2018, 11:34-44. [49] Pellis A, Cantone S, Ebert C, et al.Evolving biocatalysis to meet bioeconomy challenges and opportunities[J]. New Biotechnology, 2018, 40:154-169. [50] Bilal M, Rasheed T, Nabeel F, et al.Hazardous contaminants in the environment and their laccase-assisted degradation-A review[J]. Journal of Environmental Management, 2019, 234:253-264. [51] 司静, 李伟, 崔宝凯, 等. 真菌漆酶性质、分子生物学及其应用研究进展[J]. 生物技术通报, 2011, 2:48-55. [52] 甄静, 李冠杰, 李伟, 等. 毛栓孔菌XYG422菌株产漆酶发酵条件优化及对玉米秸秆生物降解的研究[J]. 菌物学报, 2017, 36(6):718-729. [53] Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. Fungal laccases[J]. Fungal Biology Reviews, 2013, 27:67-82. [54] Fernández- Fernández M, Sanromán MÁ, Moldes D.Recent developments and applications of immobilized laccase[J]. Biotechnology Advances, 2013, 31:1808-1825. [55] 司静, 崔宝凯, 戴玉成. 栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化[J]. 微生物学通报, 2011, 38(3):405-416. [56] 刘家扬, 蔡宇杰, 廖祥儒, 等. 漆酶高产菌的筛选及产酶优化[J]. 食品与机械, 2010, 26(4):10-14. [57] 陈琼华, 周玉萍, 毕凡星, 等. 真菌漆酶高产菌株的筛选[J]. 广州大学学报:自然科学版, 2009, 8(5):53-57. [58] 王玉俊, 樊忠慧, 王长宝, 等. 高产漆酶白腐真菌的筛选[J]. 湖北农业科学, 2017, 56(21):4043-4045. [59] 梁倩倩, 魏生龙, 席亚丽, 等. 响应面法优化荷叶离褶伞菌丝体产漆酶条件[J]. 菌物学报, 2016, 35(3):335-342. [60] 王书超, 张宇, 何爽, 等. 树舌灵芝产漆酶发酵条件的优化[J]. 现代农业研究, 2018, 3:9-11. [61] 郑飞, 孟歌, 安琪, 等. 白腐真菌东方栓孔菌在两种液体培养基中产漆酶过程的生理学研究[J]. 菌物学报, 2017, 36(5):582-297. [62] 刘海霞, 张力, 乔梁. 白腐真菌发酵罐产漆酶条件的优化[J]. 江苏农业科学, 2017, 45(21):305-307. [63] 陈琼华, 周玉萍, 桂林, 等. 韦伯灵芝漆酶生产中试研究[J]. 食品与发酵工业, 2016, 42(5):44-49. [64] Kuhar F, Papinutti L.Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers[J]. Revista Argentina de Microbiología, 2014, 46(2):144-149. [65] Tavares APM, Coelho MAZ, Coutinho JAP, et al.Laccase improvement in submerged cultivation:induced production and kinetic modelling[J]. Journal of Chemical Technology and Biotechnology, 2005, 80:669-676. [66] 安琪, 司静, 戴玉成. 不同诱导培养基对糙皮侧耳液体发酵产漆酶活性的影响[J]. 菌物学报, 2018, 37(3):361-370. [67] Couto SR, Gundín M, Lorenzo M, et al.Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions[J]. Process Biochemistry, 2002, 38(2):249-255. [68] 王岁楼, 李国富, 王琼波, 等. 紫外和超高压诱导漆酶产生菌变异的对比研究[J]. 郑州轻工业学院学报:自然科学版, 2005, 20(3):39-42. [69] Fang ZM, Li TL, Chang F, et al.A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability[J]. Bioresource Technology, 2012, 111:36-41. [70] Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, et al.Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 108:32-42. [71] Si J, Peng F, Cui BK.Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens[J]. Bioresource Technology, 2013, 128:49-57. [72] Kim H, Lee S, Ryu S, et al.Decolorization of Remazol Brilliant Blue R by a purified laccase of Polyporus brumalis[J]. Applied Biochemistry & Biotechnology, 2012, 166(1):159-164. [73] Manavalan T, Manavalan A, Thangavelu KP, et al.Characterization of optimized production, purification and application of laccase from Ganoderma lucidum[J]. Biochemical Engineering Journal, 2013, 70(2):106-114. [74] Wang SS, Ning YJ, Wang SN, et al.Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01[J]. International Journal of Biological Macromolecules, 2017, 95:920-927. [75] Zheng F, An Q, Meng G, et al.A novel laccase from white rot fungus Trametes orientalis:Purification, characterization, and application[J]. International Journal of Biological Macromolecules, 2017, 102:758-770. [76] Zheng MM, Chi YJ, Yi HW, et al.Decolorization of Alizarin Red and other synthetic dyes by a recombinant laccase from Pichia pastoris[J]. Biotechnology Letters, 2014, 36(1):39-45. [77] Tosa T, Mori T, Fuse N, et al.Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase[J]. Enzymologia, 1966, 31(4):214-224. [78] Bilal M, Asgher M, Parra-Saldivar R, et al.Immobilized ligninolytic enzymes:An innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review[J]. Science of the Total Environment, 2017, 576:646-659. [79] Zheng F, Cui BK, Wu XJ, et al.Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes[J]. International Biodeterioration & Biodegradation, 2016, 110:69-78. [80] Lassouane F, Aït-Amar H, Amrani S, et al.A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions[J]. Bioresource Technology, 2019, 271:360-367. [81] Saoudi O, Ghaouar N.Biocatalytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone[J]. International Journal of Biological Macromolecules, 2019, 128:681-691. [82] Nadaroglu H, Mosber G, Gungor AA, et al.Biodegradation of some azo dyes from wastewater with laccase from Weissella viridescens LB37 immobilized on magnetic chitosan nanoparticles[J]. Journal of Water Process Engineering, 2019, 31:100866. [83] Rani M, Shanker U, Chaurasia AK.Catalytic potential of laccase immobilized on transition metal oxides nanomaterials:Degradation of alizarin red S dye[J]. Journal of Environmental Chemical Engineering, 2017, 5:2730-2739. [84] Jahangiri E, Thomas I, Schulze A, et al.Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment[J]. Science of the Total Environment, 2018, 624:309-322. [85] Rouhani S, Rostami A, Salimi A, et al.Graphene oxide/CuFe2O4 nanocomposite as a novel scaffold for the immobilization of laccase and its application as a recyclable nanobiocatalyst for the green synthesis of arylsulfonyl benzenediols[J]. Biochemical Engineering Journal, 2018, 133:1-11. [86] Mohammadi M, As'habi MA, Salehi P, et al. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds[J]. International Journal of Biological Macromolecules, 2018, 109:443-447. [87] Naghdi M, Taheran M, Brar SK, et al.Pinewood nanobiochar:A unique carrier for the immobilization of crude laccase by covalent bonding[J]. International Journal of Biological Macromolecules, 2018, 115:563-571. [88] Chen XC, Zhou QZ, Liu FM, et al.Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase[J]. Chemosphere, 2019, 233:49-56. [89] Zdarta J, Meyer AS, Jesionowski T, et al.Developments in support materials for immobilization of oxidoreductases:a comprehensive review[J]. Advances in Colloid and Interface Science, 2018, 258:1-20. [90] Ma HF, Meng G, Cui BK, et al.Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes:laccase immobilization and characterization[J]. Chemical Engineering Research and Design, 2018, 132:664-676. [91] Cui JD, Ren SZ, Sun BT, et al.Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes:current development and future challenges[J]. Coordination Chemistry Reviews, 2018, 370:22-41. [92] 姜德生, 龙胜亚, 肖海燕, 等. 磁性壳聚糖微球的制备及其用作漆酶固定化载体[J]. 应用化学, 2005, 22(10):1122-1126. [93] 黄俊, 周菊英, 肖海燕, 等. CuTAPc-Fe3O4纳米复合粒子及其漆酶固定化研究[J]. 化学学报, 2005, 63(14):1343-1347. [94] 王苗苗, 李群艳, 韦奇, 等. 介孔SiO2/Fe3O4中空磁性微球的漆酶固定化[J]. 高等学校化学学报, 2013, 34(2):299-305. [95] 张笛, 邓满凤, 赵赫, 等. 多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚[J]. 化工学报, 2015, 66(9):3705-3711. [96] 戚绪亮, 刘翔, 刘波, 等. 树脂D201上粗漆酶的固定化及对孔雀石绿的脱色[J]. 环境科学, 2012, 33(8):2747-2751. [97] Olajuyigbe FM, Adetuyi OY, Fatokun CO.Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A[J]. International Journal of Biological Macromolecules, 2019, 125:856-864. [98] Lloret L, Hollmann F, Eibes G, et al.Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor[J]. Biodegradation, 2012, 23(3):373-386. [99] 王珏玉, 范丽莉, 王炎, 等. 漆酶固定化磁性载体的研究进展[J]. 化学与生物工程, 2017, 34(1):15-22. |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[3] | KONG De-zhen, NIE Ying-bin, CUI Feng-juan, SANG Wei, XU Hong-jun, TIAN Xiao-ming. Research Status and Prospect of Hybrid Wheat Seed Production [J]. Biotechnology Bulletin, 2023, 39(1): 95-103. |
[4] | LI Wen-shuo, WANG Lin-song, DU Gui-cai, GUO Qun-qun, ZHANG Ting-ting, YANG Hong LI Rong-gui. Gene Cloning of an Aldehyde Dehydrogenase from Bursaphelenchus xylophilus and Biochemical Characterization [J]. Biotechnology Bulletin, 2022, 38(9): 207-214. |
[5] | QIN Xue-jing, WANG Yu-han, CAO Yi-bo, ZHANG Ling-yun. Prokaryotic Expression and Preparation of Polyclonal Antibody of PwHAP5 Gene in Picea wilsonii [J]. Biotechnology Bulletin, 2022, 38(8): 142-149. |
[6] | WANG Yu-chen, DING Zun-dan, GUAN Fei-fei, TIAN Jian, LIU Guo-an, WU Ning-feng. Identification of the Thermostable Laccase Gene ba4 and Characterization of Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(8): 252-260. |
[7] | JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes [J]. Biotechnology Bulletin, 2022, 38(6): 252-260. |
[8] | YI Fang, LAI Peng-cheng, ZHENG Xi-ao, HU Shuai, GAO Yan-li. Research on the Preparation and Purification of Kod DNA Polymerase [J]. Biotechnology Bulletin, 2022, 38(5): 183-190. |
[9] | MAO Guo-tao, WANG Jie, WANG Kai, WANG Fang-yuan, CAO Le-yan, ZHANG Hong-sen, SONG An-dong. Characterization of Laccase TaLac from Thermus aquaticus and Its Application in Removing Malachite Green Dye [J]. Biotechnology Bulletin, 2022, 38(4): 261-268. |
[10] | WANG Xiao-qin, HUANG Yin-ping, WANG Wei-qian, WU Ping, QUAN Shu. Expression and Purification of the MLL3SET Protein with a Site-directed Mutation of an Unnatural Amino Acid [J]. Biotechnology Bulletin, 2022, 38(3): 194-202. |
[11] | ZHANG Feng-wen, ZHOU Li-ya, DONG Chao, SHI Yan-mao. Purification of Antioxidant Peptides from Natto Supernatant and Study on Its Activity [J]. Biotechnology Bulletin, 2022, 38(2): 158-165. |
[12] | CHEN Duo, LIU Yong-zhe. Prokaryotic Expression,Purification and Crystallization of N-terminal Domain of Nucleocapsid Protein in SARS-CoV-2 [J]. Biotechnology Bulletin, 2022, 38(12): 149-155. |
[13] | LIU Tian-hai, YANG Shu-qin, LIU Fu-peng, MIAO Ren-yun, YU Yang, WU Xiang, TANG Jie, WANG Yong, PENG Wei-hong, TAN Hao. Effects of Organic Fertilizers Fermented with Wheat Straw and Chicken Manure on the Continuous Cultivation of Morchella sextelata [J]. Biotechnology Bulletin, 2022, 38(12): 263-273. |
[14] | KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(10): 132-139. |
[15] | SHAN Qi, JIA Hui-shu, YAO Wen-bo, LIU Wei-can, LI Hai-yan. Research Progress in Biological Functions of miR396-GRF Module in Plants and Its Potential Application Values [J]. Biotechnology Bulletin, 2022, 38(10): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||