Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 150-159.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0786
Previous Articles Next Articles
WANG Shi-wei1, WANG Qing-hui2
Received:
2019-09-09
Online:
2020-01-26
Published:
2020-01-08
WANG Shi-wei, WANG Qing-hui. Research Advances in Functional Mechanisms of Bacillus amyloliquefacien[J]. Biotechnology Bulletin, 2020, 36(1): 150-159.
[1] Ren H, Su YT, Guo XH .Rapid optimization of spore production from Bacillus amyloliquefaciens in submerged cultures based on dipicolinic acid fluorimetry assay[J]. AMB Express, 2018, 8(1):21. [2] Berikashvili V, Sokhadze K, Kachlishvili E, et al.Bacillus amyloliquefaciens spore production under solid-state fermentation of lignocellulosic residues[J]. Probiotics and Antimicrobial Proteins, 2017. 10(1):755-761. [3] Omony J, De JA, Krawczyk AO, et al.Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens:a transcriptomic model[J]. Microbial Genomics, 2018, 4(2). doi:10. 1099/mgen. 0. 000157. [4] Shahrokh Esfahani S, Emtiazi G, Shafiei R, et al.Tolerance induction of temperature and starvation with tricalcium phosphate on preservation and sporulation in Bacillus amyloliquefaciens detected by flow cytometry[J]. Current Microbiology, 2016, 73(3):366-373. [5] Huang Y, Philip XY, Doona CJ, et al.An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in nonthermal plasma of ambient air[J]. Journal of the Science of Food & Agriculture, 2018, 99(1):368-378. [6] Wu K, Fang Z, Guo R, et al.Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of tobacco[J]. PLoS One, 2015, 10(5):e0127418. [7] Martins SJ, Medeiros Flávio HV, Venkatachalam L, et al.Impact of seed exudates on growth and biofilm formation of Bacillus amyloliquefaciens ALB629 in common bean[J]. Frontiers in Microbiology, 2018, 8:2631. doi. 10. 3389/fmicb. 2017. 02631 [8] Kimani VN, Chen L, Liu Y, et al.Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber[J]. Journal of Basic Microbiology, 2016, 56(11):1183-1193. [9] Yuan J, Zhang N, Huang Q, et al.Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6[J]. Scientific Reports, 2015, 5(1):13438. [10] Zhang N, Yang D, Wang D, et al.Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates[J]. BMC Genomics, 2015, 16(1):685. [11] Dong XY, Liu YP, Zhang GS, et al.Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium, Bacillus amyloliquefaciens, SQR9 and its effect on biofilm formation[J]. Biochemical and Biophysical Research Communications, 2018, 503(2):784-790. [12] Yang Y, Yan L, Tantan G, et al.C-di-GMP turnover influences motility and biofilm formation in, Bacillus amy loliquefaciens, PG12[J]. Research in Microbiology, 2018, 169(4-5):205-213. [13] Wang JH, Yang CY, Fang ST, Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines[J]. World J Microbiol Biotechnol, 2016, 32(9):143. [14] Xu Z, Zhang R, Wang D, et al.Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU Phosphorylation[J]. Applied and Environmental Microbiology, 2014, 80(9):2941-2950. [15] Johansson AH, Bejai S, Niazi A, et al.Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays[J]. Antonie van Leeuwenhoek, 2014, 106(6):1247-1257. [16] Liu Y, Zhang N, Qiu M, et al.Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection[J]. FEMS Microbiology Letters, 2014, 353(1):49-56. [17] Weng J, Wang Y, Li J, et al.Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption[J]. Appl Microbiol Biotechnol, 2013, 97(19):8823-8830. [18] Feng H, Zhang N, Du W, et al.Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions, 2018, 31(10):995-1005. [19] Asari S, Tarkowská D, Rolčík, J, et al.Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thalianaas host plant[J]. Planta, 2017, 245(1):15-30. [20] Qin YX, Shang QM, Zhang Y, et al.Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling[J]. Frontiers in Microbiology, 2017, 8:2620. [21] Irizarry I, White JF.Bacillus amyloliquefaciens alters gene expression, ROS production, and lignin synthesis in cotton seedling roots[J]. Journal of Applied Microbiology, 2018, 124(6):1589-1603. [22] Liu Y, Chen L, Zhang N, et al.Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions:2016, 29(4):324. [23] Fan B, Li YL, Li L, et al.Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions[J]. Journal of Proteomics, 2017, 154:1-12. [24] Asari S, Matzén S, Petersen MA, et al. Multiple effects of Bacillus amyloliquefaciens volatile compounds:plant growth promotion and growth inhibition of phytopathogens[J]. FEMS Microbiology Ecology, 2016, 92(6):fiw070. [25] Gotor-Vila A, Teixidó, N, Di Francesco A, et al. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry[J]. Food Microbiology, 2017, 64:219-225. [26] Raza W, Zhong W, Ling N, et al.Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains[J]. Journal of Biotechnology, 2016:S0168165616301948. [27] Raza W, Wang J, Wu Y, et al.Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum[J]. Applied Microbiology and Biotechnology, 2016, 100(17):7639-7650. [28] Raza W, Ling N, Yang L, et al.Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9[J]. Scientific Reports, 2016, 6:24856. [29] Kumar M, Mishra S, Dixit V, et al.Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea(Cicer arietinum L.)[J]. Plant Signaling & Behavior, 2016, 11(1):e1071004. [30] Chen L, Liu Y, Wu G, et al.Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9[J]. Physiologia Plantarum, 2016, 158(1):34-44. [31] Shalini T, Vivek P, Chauhan PS, et al.Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice[J]. Frontiers in Plant Science, 2017, 8:1510. [32] Chang X, Wu Z, Wu S, et al.Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1[J]. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 32(4):1-8. [33] Lee A, Cheng KC, Liu JR, et al.Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential[J]. PLoS One, 2017, 12(8):e0182220. [34] Das MP, Kumar S.An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens[J]. 3 Biotech, 2015, 5(1):81-86. [35] Rafiemanzelat F, Jafari M, Emtiazi G.Study of biological degradation of New Poly(Ether-Urethane-Urea)s containing cyclopeptide moiety and PEG by Bacillus amyloliquefaciens, isolated from soil[J]. Applied Biochemistry and Biotechnology, 2015, 177(4):842-860. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[3] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[4] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[7] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[8] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[9] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[10] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[11] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[12] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[13] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[14] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[15] | CHEN Chu-wen, LI Jie, ZHAO Rui-peng, LIU Yuan, WU Jin-bo, LI Zhi-xiong. Cloning, Tissue Expression Profile and Function Prediction of GPX3 Gene in Tibetan Chicken [J]. Biotechnology Bulletin, 2023, 39(3): 311-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||