[1] Bao DP, Bai R, Gao YN, et al.Computational insights into the molecular mechanism of the high immunomodulatory activity of LZ-8 protein isolated from the lingzhi or reishi medicinal mushroom Ganoderma lucidum(Agaricomycetes)[J]. Int J Med Mushrooms, 2018, 20(6):537-548. [2] Lin TY, Hsu HY, Sun WH, et al.Induction of Cbl-dependent epidermal growth factor receptor degradation in Ling Zhi-8 suppressed lung cancer[J]. Int J Cancer, 2017, 140(11):2596-2607. [3] Lin TY, Hsu HY.Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation[J]. Cancer Lett, 2016, 375(2):340-348. [4] Wu JR, Hu CT, You RI, et al.Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression[J]. Oncotarget, 2015, 6(32):32526-32544. [5] 李柏志. 重组灵芝免疫调节蛋白(rLZ-8)发酵及纯化的中试工艺研究[D]. 长春:吉林大学, 2009. [6] Popov P, Kozlovskii I, Katritch V.Computational design for thermostabilization of GPCRs[J]. Curr Opin Struct Biol, 2019, 55:25-33. [7] 易弋, 韦阳道, 邓春, 等. 氨基酸残基在蛋白质热稳定性机制中的研究进展[J]. 广西科技大学学报, 2015, 26(4):1-5. [8] 胡长浩. 产脂肪酶菌的筛选及随机突变改善酶热稳定性[D]. 福州:福建师范大学, 2009. [9] 吕鑫, 王腾飞, 汪俊卿, 等. Lys490饱和突变提高海藻糖合酶转化率的研究[J]. 食品与发酵工业, 2018, 44(1):60-65. [10] 刘晓萌, 张彭湃, 胡升, 等. 细胞色素P450 BM-3热稳定性的半理性改造[J]. 高校化学工程学报, 2015, 29(5):1138-1144. [11] 蔡少丽, 邹有土, 黄建忠, 等. 定点突变对扩展青霉脂肪酶热稳定性的改善[J]. 应用与环境生物学报, 2013, 19(1):43-47. [12] 李同彪, 周晨妍, 朱新术, 等. V1C定点突变木聚糖酶XynZF-2对酶热稳定性的影响[J]. 食品与发酵工业, 2015(4):39-43. [13] 吕建平, 魏冬青, 王永华, 等. 基于分子动力学的脂肪酶Lipase 5的热稳定性研究[J]. 原子与分子物理学报, 2016, 33(1):128-134. [14] 杨倩, 汤斌, 李松. 米根霉α-淀粉酶热稳定性的理性设计[J]. 生物工程学报, 2018, 34(7):1117-1127. [15] 杜坤, 甘一如, 黄鹤. 活性位点邻近的Ω-loop对胰蛋白酶热稳定性和活性的影响[J]. 高校化学工程学报, 2017, 31(3):657-662. [16] 阎明慧. 重组灵芝免疫调节蛋白进入肝癌细胞内吞机制的研究[D]. 长春:吉林大学, 2015. [17] Lin WH, Hung CH, Hsu CI,et al.Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae(Fip-gts)defined by a yeast two-hybrid system and site-directed mutagenesis[J]. J Biol Chem, 1997, 272(32):20044-20048. [18] Watanabe M, Matsuzawa T, Yaoi K.Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis[J]. Appl Microbiol Biotechnol, 2018, 102(20):8677-8684. [19] Korendovych IV.Rational and semirational protein design[J]. Methods Mol Biol, 2018, 1685:15-23. [20] Mate DM, Alcalde M.Laccase engineering:from rational design to directed evolution[J]. Biotechnol Adv, 2015, 33(1):25-40. [21] 丛华剑. 蛋白质热稳定性的相关序列特征挖掘[D]. 烟台:烟台大学, 2016. [22] 方卉, 吕常江, 花雨娇, 等. 利用脯氨酸效应提高短乳杆菌谷氨酸脱羧酶的热稳定性[J]. 生物工程学报, 2019(4):636-646. [23] Mateljak I, Rice A, Yang K, et al.The generation of thermostable fungal laccase chimeras by SCHEMA-RASPP structure-guided recombination in vivo[J]. ACS Synth Biol, 2019, 8(4):833-843. [24] Ren W, Liu L, Gu L, Yan W, et al.Crystal structure of GH49 dext-ranase from arthrobacter oxidans KQ11:Identification of catalytic base and improvement of thermostability using semirational design based on B-Factors[J]. J Agric Food Chem, 2019, 67(15):4355-4366. [25] 昂安娜. N-糖基化改造碱性果胶酶的热稳定性[D]. 芜湖:安徽工程大学, 2018. [26] 林玲. 利用分子改造技术提高富马酸酶的热稳定性[D]. 杭州:浙江大学, 2018. [27] 李冠霖. 脂肪酶/酯酶的理性设计和改造研究[D]. 武汉:华中科技大学, 2018. [28] 肖运柱. 半理性设计提高海洋细菌肽酶混杂水解有机磷的催化活性[D]. 北京:中国科学院大学, 2017. |