Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 148-154.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0401
Previous Articles Next Articles
CAO Wen-yan1(), WANG Xin-ning1(), SHEN Yu2, LI Zai-lu1, BAO Xiao-ming1,2
Received:
2020-04-09
Online:
2020-11-26
Published:
2020-11-20
Contact:
WANG Xin-ning
E-mail:wenyancao@foxmail.com;xnwang@qlu.edu.cn
CAO Wen-yan, WANG Xin-ning, SHEN Yu, LI Zai-lu, BAO Xiao-ming. Research Advances on Transcription Factor Yrr1p of Pleiotropic Drug Resistance in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2020, 36(11): 148-154.
[1] |
dos Santos SC, Sá-Correia IB. Yeast toxicogenomics:lessons from a eukaryotic cell model and cell factory[J]. Current Opinion in Biotechnology, 2015,33(1):183-191.
doi: 10.1016/j.copbio.2015.03.001 URL |
[2] |
Gil FN, Gonçalves AC, Becker JD, et al. Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae[J]. Ecotoxicology, 2018,27(7):871-889.
doi: 10.1007/s10646-018-1929-1 URL pmid: 29611082 |
[3] |
Bereketoglu C, Arga KY, Eraslan S, et al. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A[J]. Current Genetics, 2017,63(2):253-274.
doi: 10.1007/s00294-016-0633-z URL pmid: 27460658 |
[4] |
Wu G, Xu Z, Jönsson LJJMCF. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion[J]. Microbial Cell Factories, 2017,16(1):199.
doi: 10.1186/s12934-017-0811-9 URL pmid: 29137634 |
[5] |
Bereketoglu C, Arga KY, Eraslan S, et al. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure[J]. Physiological Genomics, 2017,49(10):549-566.
doi: 10.1152/physiolgenomics.00034.2017 URL pmid: 28887370 |
[6] |
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass[J]. Applied Microbiology and Biotechnology, 2004,66(1):10-26.
doi: 10.1007/s00253-004-1642-2 URL |
[7] |
Wang X, Liang Z, Hou J, et al. The absence of the transcription factor Yrr1p, identified from comparative genome profiling, Increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017,8:367.
doi: 10.3389/fmicb.2017.00367 URL pmid: 28360888 |
[8] |
Cui Z, Shiraki T, Hirata D, et al. Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2[J]. Molecular Microbiology, 1998,29(5):1307-1315.
doi: 10.1046/j.1365-2958.1998.01027.x URL pmid: 9767597 |
[9] |
Le Crom S, Devaux F, Marc P, et al. New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system[J]. Molecular and Cellular Biology, 2002,22(8):2642-2649.
doi: 10.1128/mcb.22.8.2642-2649.2002 URL pmid: 11909958 |
[10] |
Zhang X, Cui Z, Miyakawa T, et al. Cross-talk between transcriptio-nal regulators of multidrug resistance in Saccharomyces cerevi-siae[J]. The Journal of Biological Chemistry, 2001,276(12):8812-8819.
doi: 10.1074/jbc.M010686200 URL pmid: 11134057 |
[11] |
Kodo N, Matsuda T, Doi S, et al. Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae[J]. Biochemical and Biophysical Research Communications, 2013, 434(1):42-47.
doi: 10.1016/j.bbrc.2013.03.069 URL pmid: 23545261 |
[12] |
Teixeira MC, Dias PJ, Simoes T, et al. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1[J]. Biochemical and Biophysical Research Communications, 2008,367(2):249-255.
doi: 10.1016/j.bbrc.2007.12.056 URL pmid: 18086556 |
[13] |
Akache B, Turcotte B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins[J]. The Journal of Biological Chemistry, 2002,277(24):21254-21260.
doi: 10.1074/jbc.M202566200 URL pmid: 11943786 |
[14] |
Akache B, Macpherson S, Sylvain MA, et al. Complex interplay among regulators of drug resistance genes in Saccharomyces cerev-isiae[J]. The Journal of Biological Chemistry, 2004,279(27):27855-27860.
doi: 10.1074/jbc.M403487200 URL pmid: 15123673 |
[15] | Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators[J]. Nucleic Acids Research, 1996,23(24):4599-4607. |
[16] | Gallagher JEG, Zheng W, Rong XQ, et al. Divergence in a master variator generates distinct phenotypes and transcriptional responses[J]. Genes & Development, 2014,13(28):409-421. |
[17] | Wang X, Liang Z, Hou J, et al. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance[J]. BMC Biotechnol Biomedcentral, 2016,16(1):31. |
[18] |
Katzmann DJ, Hallstrom TC, Voet M, et al. Expression of an ATP-binding cassette transporter-encoding gene(YOR1)is required for oligomycin resistance in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1995,15(12):6875-6883.
doi: 10.1128/mcb.15.12.6875 URL pmid: 8524254 |
[19] |
Servos J, Haase E, Brendel MJM, et al. Gene SNQ2 of Saccharomyces cerevislae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases[J]. Molecular and General Genetics, 1993,236(2-3):214-218.
doi: 10.1007/BF00277115 URL pmid: 8437567 |
[20] |
Iwaki A, Ohnuki S, Suga Y, et al. Vanillin inhibits translation and induces messenger ribonucleoprotein(mRNP)granule formation in saccharomyces cerevisiae:application and validation of high-content, image-based profiling[J]. PLoS One, 2013,8(4):e61748.
doi: 10.1371/journal.pone.0061748 URL pmid: 23637899 |
[21] |
Li YC, Gou ZX, Zhang Y, et al. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation[J]. Brazilian Journal of Microbiology, 2017,48(4):791-800.
doi: 10.1016/j.bjm.2016.11.011 URL pmid: 28629968 |
[22] |
Shen Y, Li H, Wang X, et al. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity[J]. Journal of Industrial Microbiology & Biotechnology, 2014,41(11):1637-1645.
doi: 10.1007/s10295-014-1515-3 URL pmid: 25261986 |
[23] | Wang X, Liang Z, Hou J, et al. The absence of the transcription factor Yrr1p, identified from comparative genome profiling, increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017,8(1):367. |
[24] |
Devaux F, Philippe M, Bouchoux C, et al. An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor[J]. EMBO Reports, 2001,2(6):493-498.
doi: 10.1093/embo-reports/kve114 URL pmid: 11415981 |
[25] |
DeRisi J, van den Hazel P, Marc P, et al. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants[J]. FEBS Letters, 2000,470(1):156-160.
doi: 10.1016/S0014-5793(00)01294-1 URL |
[26] |
Nishida-Aoki N, Mori H, Kuroda K, et al. Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast[J]. Current Genetics, 2015,61(2):153-164.
doi: 10.1007/s00294-014-0463-9 URL pmid: 25487302 |
[27] |
Hikkel I, Lucau-Danila A, Delaveau T, et al. A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast[J]. The Journal of Biological Chemistry, 2003,278(13):11427-11432.
doi: 10.1074/jbc.M208549200 URL pmid: 12529331 |
[28] |
Lucau-Danila A, Delaveau T, Lelandais G, et al. Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon[J]. The Journal of Biological Chemistry, 2003,278(52):52641-52650.
doi: 10.1074/jbc.M309580200 URL pmid: 14512416 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[5] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[6] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[7] | HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines [J]. Biotechnology Bulletin, 2023, 39(8): 185-193. |
[8] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[9] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[10] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[11] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[12] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[13] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[14] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[15] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||