Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 180-187.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0400
Previous Articles Next Articles
Received:
2020-04-10
Online:
2020-11-26
Published:
2020-11-20
CHEN Peng. Rapid Screening Strategy for Target Identification of Bioactive Natural Products[J]. Biotechnology Bulletin, 2020, 36(11): 180-187.
[1] | Challinor VL, Bode HB. Bioactive natural products from novel microbial sources[J]. Annals of the Newyork Academy of Sciences, 2015,1354:82-97. |
[2] |
Tian Y, Li YL, Zhao FC. Bioactive natural products from animal associated-microbes[J]. Mini-reviews in Medicinal Chemistry, 2017,17(17):1588-1601.
doi: 10.2174/1389557516666161024144014 URL pmid: 27781963 |
[3] | Fleming A. The discovery of penicillin[J]. British Medical Journal, 1944,2(4916):792. |
[4] | Vane JR, Flower RJ, Botting RM. History of aspirin and its mechanism of action[J]. Stroke, 1990,21(12):12-23. |
[5] |
Riaz M, Asghar A, Rashid R, et al. Treasures hunt in old mines:terminalia chebula-based traditional herbal medicinal products[J]. Natural Products Journal, 2015,5(4):252-267.
doi: 10.2174/2210315505666150930225815 URL |
[6] |
Tu YY. The discovery of artemisinin(qinghaosu)and gifts from Chinese medicin[J]. Nat Med, 2011,17(10):1217-1220.
doi: 10.1038/nm.2471 URL pmid: 21989013 |
[7] |
Hu J, Fang J, Dong Y, et al. Arsenic in cancer therapy[J]. Anticancer Drugs, 2005,16(2):119-127.
doi: 10.1097/00001813-200502000-00002 URL pmid: 15655408 |
[8] | Gassel M, Cramer J, Kern C, et al. Lessons learned from target-based lead discovery[M], New York:John Wiley Sons, 2009. |
[9] | Ahmad S. Natural Product-based drug discovery[M], New York:John Wiley Sons, 2015. |
[10] |
Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs:how many targets and how many drugs?[J]. Molecular Pharmacol, 2018,93(4):251-258.
doi: 10.1124/mol.117.111062 URL |
[11] |
Purcell RH, Hall RA. Adhesion G protein-coupled receptors as drug targets[J]. Annual Review of Pharmacology and Toxicology, 2018,58:429-449.
doi: 10.1146/annurev-pharmtox-010617-052933 URL pmid: 28968187 |
[12] | 李玉斌, 吕超, 张卫东. 非标记的天然产物靶点识别和确证方法及应用[J]. 药学学报, 2019,54(1):98-104. |
Li YB, Lv C, Zhang WD. Application of methods on target identification and validation of label-free natural products[J]. Acta Pharmaceutica Sinica, 2019,54(1):98-104. | |
[13] |
Lee JA, Berg EL. Neoclassic drug discovery:the case for lead generation using phenotypic and functional approaches[J]. Journal of Biomolecular Screening, 2013,18(10):1143-1155.
doi: 10.1177/1087057113506118 URL pmid: 24080259 |
[14] |
Li ZC, Huang MH, Zhong WQ, et al. Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features[J]. Bioinformatics, 2016,32(7):1057-1064.
URL pmid: 26614126 |
[15] |
肖斌, 王耘. 中药功能靶点的研究[J]. 中西医结合学报, 2010,8(12):1190-1194.
pmid: 21144463 |
Xiao B, Wang Y. Functional targets of Chinese herbal medicine[J]. Journal of Chinese Integrative Medicine, 2010,8(12):1190-1194.
URL pmid: 21144463 |
|
[16] | 曾克武, 廖理曦, 万彦军, 等. 基于靶点“钩钓”策略的肉苁蓉苯乙醇苷药理靶点鉴定及功效解析[J]. 中草药. 2018,1:173-178. |
Zeng KW, Liao LX, Wang YJ, et al. Pharmacological targets identification and efficacy analysis of phenylethanoid glycosides from Cistanches Herba based on “target fishing” strategy[J]. Chinese Traditional and Herbal Drugs, 2018,49(1):173-178. | |
[17] | Liao LX, Song XM, Wang LC, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy[J]. PNAS, 2017,114(29):5986-5994. |
[18] | Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment[J]. Pharmacol Research, 2020,155:104743. |
[19] |
Titov DV, Liu JO. Identification and validation of protein targets of bioactive small molecules[J]. Bioorganic & Medicinal Chemistry, 2012,20(6):1902-1909.
doi: 10.1016/j.bmc.2011.11.070 URL pmid: 22226983 |
[20] |
Saxena C. Identification of protein binding partners of small molecules using label-free methods[J]. Expert Opinion Drug Discovery, 2016,11(10):1017-1025.
doi: 10.1080/17460441.2016.1227316 URL |
[21] | Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products[J]. Natural Product Reports, 2016,33(5):733-736. |
[22] | Bantscheff M. Mass spectrometry-based chemoproteomic approaches[M], Switzerland:Springer Nature, 2012. |
[23] | 索建兰. 紫外吸收光谱法测定细辛中甲基丁香酚[J]. 中国医药指南, 2011,31:287-288. |
Suo JL. Determination of methyl eugenol in Asarum by UV absorption spectrometry[J]. Zhong Guo Yi Yao Zhi Nan. 2011,31:287-288. | |
[24] | 华嘉菊. 紫外分光光度法在中国药典1990年版(二部)标准中的应用[J]. 中国药学杂志, 1992,27(11):689-691. |
Hua JJ. Application of UV spectrophotometry in the Chinese pharmacopoeia 1990 edition(Part 2)[J]. Chinese Pharmaceutical Journal. 1992,27(11):689-691. | |
[25] |
Santofimia-Castaño P, Salido GM, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca2+ concentration determinations[J]. Cytotechnology, 2016,68(4):1369-1380.
doi: 10.1007/s10616-015-9898-1 URL pmid: 26091617 |
[26] | Su D, Cheng Y, Liu M, et al. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro[J]. PLoS One, 2013,8(1):54505. |
[27] | Wang J, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum[J]. Nature Communication, 2015,6:10111. |
[28] | Park H, Ha J, Park SB. Label-free target identification in drug discovery via phenotypic screening[J]. Current Opinion Chemical Biology, 2019,50:66-72. |
[29] |
West GM, Tucker CL, Xu T, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements[J]. PNAS, 2010,107(20):9078-9082.
doi: 10.1073/pnas.1000148107 URL pmid: 20439767 |
[30] |
Geer Wallace MA, Kwon DY, Weitzel DH, et al. Discovery of manassantin a protein targets using large-scale protein folding and stability measurements[J]. Journal of Proteome Research, 2016,15(8):2688-2696.
doi: 10.1021/acs.jproteome.6b00237 URL pmid: 27322910 |
[31] |
Roberts JH, Liu F, Karnuta JM, et al. Discovery of age-related protein folding stability differences in the mouse brain proteome[J]. Journal of Proteome Research, 2016,15(12):4731-4741.
doi: 10.1021/acs.jproteome.6b00927 URL pmid: 27806573 |
[32] |
Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability(DARTS)[J]. PNAS, 2009,106(51):21984-21989.
doi: 10.1073/pnas.0910040106 URL pmid: 19995983 |
[33] |
Robinson TJ, Pai M, Liu JC, et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells:interaction with IQ motif-containing factors[J]. Cell Cycle, 2013,12(18):3013-3024.
URL pmid: 23974104 |
[34] | Gong F, Peng X, Sang Y, et al. Dichloroacetate induces protective autophagy in LoVo cells:involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling[J]. Cell Death Disease, 2013,4(11):913. |
[35] | Cassiano C, Esposito R, Tosco A, et al. Chemical proteomics-guided identification of a novel biological target of the bioactive neolignan magnolol[J]. Frontier in Chemistry, 2019,7:53. |
[36] | Pace CN, McGrath T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation[J]. Journal of Biological Chemistry, 1980,255(9):3862-3865. |
[37] |
Vedadi M, Niesen F, Allali-Hassani A, et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination[J]. PNAS, 103(43):15835-15840.
doi: 10.1073/pnas.0605224103 URL pmid: 17035505 |
[38] | Huynh K, Partch CL. Analysis of protein stability and ligand interactions by thermal shift assay[J]. Current Protocols in Protein Science, 2015,79(1):1-14. |
[39] | Ikuko N, Makoto M, Makoto K, et al. Identification of a small compound targeting PKM2-Regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA[J], Cell Chemical Biology, 2020,72(2):186-196. |
[40] |
Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013,341(6141):84-87.
doi: 10.1126/science.1233606 URL pmid: 23828940 |
[41] |
Park H, Ha J, Koo JY, et al. Label-free target identification using in-gel fluorescence difference via thermal stability shift[J]. Chemical Science, 2017,8(2):1127-1133.
doi: 10.1039/c6sc03238a URL pmid: 28451252 |
[42] |
Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome[J]. Science, 2014,346(6205):1255784.
doi: 10.1126/science.1255784 URL pmid: 25278616 |
[43] |
Huber KV, Olek KM, Müller AC, et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling[J]. Nature Methods, 2015,12(11):1055-1057.
doi: 10.1038/nmeth.3590 URL pmid: 26389571 |
[44] |
Becher I, Werner T, Doce C, et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat[J]. Nature Chemical Biology, 2016,12:908-910.
doi: 10.1038/nchembio.2185 URL pmid: 27669419 |
[45] |
Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry[J]. Nature Protocol, 2015,10(10):1567-1593.
doi: 10.1038/nprot.2015.101 URL |
[46] |
Ball KA, Webb KJ, Coleman SJ, et al. An isothermal shift assay for proteome scale drug-target identification[J]. Communication Biology, 2020,3(1):75.
doi: 10.1038/s42003-020-0795-6 URL |
[47] |
Bathula C, Tripathi S, Srinivasan R, et al. Synjournal of novel 5-arylidenethiazolidinones with apoptotic properties via a three component reaction using piperidine as a bifunctional reagent[J]. Organic & Biomolecular Chemistry, 14(34):8053-8063.
URL pmid: 27396309 |
[48] |
Hati S, Tripathy S, Dutta PK, et al. Spiro[pyrrolidine-3, 3'-oxindole]as potent anti-breast cancer compounds:Their design, synjournal, biological evaluation and cellular target identification[J]. Scientific Reports, 2016,6:32213.
doi: 10.1038/srep32213 URL pmid: 27573798 |
[49] |
Cong L, Ran FA, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223 URL |
[50] |
Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast[J]. Nature Review Genetics, 2007,8(6):437-449.
doi: 10.1038/nrg2085 URL pmid: 17510664 |
[51] | Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification[J]. Nature Product Reports, 2016,33(5):719-730. |
[52] |
Mali P, Yang L, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033 URL pmid: 23287722 |
[53] |
Moore JD. The impact of CRISPR-Cas9 on target identification and validation[J]. Drug Discovery Today, 2015,20(4):450-457.
doi: 10.1016/j.drudis.2014.12.016 URL pmid: 25572406 |
[54] |
Kim DH, Lee J, Kim KN, et al. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio)heptanomide, a novel histone deacetylase inhibitor[J]. Biochemical and Biophysical Research Communications, 2007,356(1):233-238.
doi: 10.1016/j.bbrc.2007.02.126 URL pmid: 17353008 |
[55] |
Cho YS, Kwon HJ. Control of autophagy with small molecules[J]. Archives of Pharmacal Research, 2010,33(12):1881-1889.
doi: 10.1007/s12272-010-1201-6 URL pmid: 21191751 |
[56] | Mele L, Paino F, Papaccio F, et al. A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo[J]. Cell Death & Disease, 2018,9(5):1-12. |
[57] |
Titov DV, Gilman B, He QL, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide[J]. Nature Chemical Biology, 2011,7(3):182-188.
doi: 10.1038/nchembio.522 URL pmid: 21278739 |
[58] | Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century:innovations for novel drug discovery[J]. International Journal of Molecular Science, 2018,19(6):1578. |
[59] |
Kumari P, Nath A, Chaube R. Identification of human drug targets using machine-learning algorithms[J]. Computers in Biology and Medicine, 2015,56:175-181.
doi: 10.1016/j.compbiomed.2014.11.008 URL pmid: 25437231 |
[60] |
Tian C, Sun R, Liu K, et al. Multiplexed thiol reactivity profiling for target discovery of electrophilic natural products[J]. Cell Chemical Biology, 2017,24(11):1416-1427.
doi: 10.1016/j.chembiol.2017.08.022 URL pmid: 28988947 |
[61] |
Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis[J]. PNAS, 2018,115(26):5896-5905.
doi: 10.1073/pnas.1802438115 URL |
[62] |
Zhang HN, Yang L, Ling JY, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic[J]. PNAS, 2015,112(49):15084-15089.
doi: 10.1073/pnas.1521316112 URL pmid: 26598702 |
[63] | Lu Y, Zhang Y, Li L, et al. TAB1:a target of triptolide in macrophages[J]. Chemical Biology, 2014,21(2):246-256. |
[64] |
Olaru A, Bala C, Jaffrezic-Renault N, et al. Surface plasmon resonance(SPR)biosensors in pharmaceutical analysis[J]. Critical Reviews in Analytical Chemistry, 2015,45(2):97-105.
doi: 10.1080/10408347.2014.881250 URL pmid: 25558771 |
[65] | 李翔, 吴磊宏, 范骁辉, 等. 复方丹参方主要活性成分网络药理学研究[J]. 中国中药杂志, 2011,21:2911-2915. |
Li X, Wu LH, Fan XH, et al. Network pharmacology study on major active compounds of Fufang Danshen formula[J]. China Journal of Chinese Materia Medica, 2011,21:2911-2915. | |
[66] |
Hopkins AL. Network pharmacology:the next paradigm in drug discovery[J]. Nature Chemical Biology, 2008,4(11):682-690.
doi: 10.1038/nchembio.118 URL pmid: 18936753 |
[67] |
Tao WY, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease[J]. Journal of Ethnopharmacol, 2013,145(1):1-10.
doi: 10.1016/j.jep.2012.09.051 URL |
[68] | 王哲义, 孙怿泽, 曲稔栋, 等. 基于网络药理学的麻杏石甘汤治疗新型冠状病毒肺炎(COVID-19)作用机制[J]. 中草药, 2020,51(8):1996-2003. |
Wang ZY, Sun YZ, Qu RD, et al. Network pharmacological study on mechanism of Maxing Shigan Decoction in treatment of coronavirus disease 2019(COVID-19)[J]. Chinese Traditional and Herbal Drugs, 2020,51(8):1996-2003. | |
[69] | 李思聪, 冯祥, 毕磊, 等. 新型冠状病毒肺炎诊疗方案中成药选用分析与药理研究进展[J]. 中药材, 2020,3:764-771. |
Li SC, Feng X, Bi L, et al. Selection analysis and pharmacological research progress of Chinese patent medicines in diagnosis and treatment of novel coronalvirus pheumonia[J]. Journal of Chinese Mecicinal Materials, 2020,3:764-771. | |
[70] | 凌晓颖, 陶嘉磊, 孙逊, 等. 基于网络药理学的连花清瘟方抗冠状病毒的物质基础及机制探讨[J]. 中草药, 2020,51(7):1723-1730. |
Ling XY, Tao JL, Sun X. Exploring material basis and mechanism of Lianhua Qingwen Prescription against coronavirus based on network pharmacology[J]. Journal of Chinese Mecicinal Materials, 2020,51(7):1723-1730. |
[1] | ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter [J]. Biotechnology Bulletin, 2023, 39(10): 41-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||