Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 199-207.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0565
Previous Articles Next Articles
LI Jia-xiu(), CAI Qian-ru, WU Jie-qun()
Received:
2020-05-12
Online:
2020-12-26
Published:
2020-12-22
Contact:
WU Jie-qun
E-mail:lijiaxiu666@163.com;jiequnwu@zjut.edu.cn
LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2020, 36(12): 199-207.
[1] |
Zhang Y, Nielsen J, Liu Z. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels[J]. FEMS Yeast Research, 2017,17(8). DOI: 10.1093/femsyr/fox080.
URL pmid: 29069390 |
[2] | Perez GJ, Rodriguez CM. Metabolic plasticity for isoprenoid biosynjournal in bacteria[J]. Biochemical Journal, 2013,452(1):19-25. |
[3] |
Clomburg JM, Qian S, Tan Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(26):12810-12815.
URL pmid: 31186357 |
[4] | Davies FK, Jinkerson RE, Posewitz MC. Toward a photosynthetic microbial platform for terpenoid engineering[J]. Photosynjournal Research, 2015,123(3):265-284. |
[5] |
Bution ML, Molina G, Abrahao MR, et al. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates[J]. Critical Reviews in Biotechnology, 2015,35(3):313-325.
doi: 10.3109/07388551.2013.855161 URL pmid: 24494701 |
[6] |
Zebec Z, Wilkes J, Jervis AJ, et al. Towards synjournal of monoterpenes and derivatives using synthetic biology[J]. Current Opinion in Chemical Biology, 2016,34:37-43.
doi: 10.1016/j.cbpa.2016.06.002 URL pmid: 27315341 |
[7] |
Wang P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019,5:5.
doi: 10.1038/s41421-018-0075-5 URL pmid: 30652026 |
[8] | Wang J, Wang Y, Meng H. Research advances in synthetic biology of terpenoids[J]. Scientia Sinica Vitae, 2015,45(10):1040-1050. |
[9] |
Ajikumar PK, Xiao WH, Tyo KE, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010,330(6000):70-74.
URL pmid: 20929806 |
[10] |
Vavitsas K, Crozet P, Vinde MH, et al. The synthetic biology toolkit for photosynthetic microorganisms[J]. Plant Physiology, 2019,181(1):14-27.
URL pmid: 31262955 |
[11] |
Katayama K, Mitsunobu H, Nishida K. Mammalian synthetic biology by CRISPRs engineering and applications[J]. Current Opinion in Chemical Biology, 2019,52:79-84.
URL pmid: 31254926 |
[12] |
Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013,496(7446):528-532.
URL pmid: 23575629 |
[13] |
Paddon CJ, Keasling JD. Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014,12(5):355-367.
URL pmid: 24686413 |
[14] |
Mitsui R, Nishikawa R, Yamada R, et al. Construction of yeast producing patchoulol by global metabolic engineering strategy[J]. Biotechnology and Bioengineering, 2020,117(5):1348-1356.
URL pmid: 31981219 |
[15] |
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications[J]. Metabolic Engineering, 2018,50:85-108.
URL pmid: 29702275 |
[16] |
Hughes RA, Ellington AD. Synthetic DNA synjournal and assembly:Putting the synthetic in synthetic biology[J]. Cold Spring Harbor Perspectives in Biology, 2017,9(1):a023812.
doi: 10.1101/cshperspect.a023812 URL |
[17] |
Ferreira R, David F, Nielsen J. Advancing biotechnology with CRISPR/Cas9:recent applications and patent landscape[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(7):467-480.
URL pmid: 29362972 |
[18] |
Choi KR, Jang WD, Yang D, et al. Systems metabolic engineering strategies:integrating systems and synthetic biology with metabolic engineering[J]. Trends in Biotechnology, 2019,37(8):817-837.
URL pmid: 30737009 |
[19] |
Katz L, Chen YY, Gonzalez R, et al. Synthetic biology advances and applications in the biotechnology industry:a perspective[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(7):449-461.
URL pmid: 29915997 |
[20] | Bloch JS. Sterol molecule:structure, biosynjournal, and function[J], 1992,57(8):378-383. |
[21] |
Daletos G, Katsimpouras C, Stephanopoulos G. Novel strategies and platforms for industrial isoprenoid engineering[J]. Trends in Biotechnology, 2020,38(7):811-822.
URL pmid: 32359971 |
[22] |
Seki H, Tamura K, Muranaka T. Plant-derived isoprenoid sweeteners:recent progress in biosynthetic gene discovery and perspectives on microbial production[J]. Bioscience, Biotechnology, and Biochemistry, 2018,82(6):927-934.
doi: 10.1080/09168451.2017.1387514 URL pmid: 29191092 |
[23] |
Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(3):E111-E118.
doi: 10.1073/pnas.1110740109 URL pmid: 22247290 |
[24] |
Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast[J]. Applied Microbiology and Biotechnology, 1998,49(1):66-71.
URL pmid: 9487712 |
[25] |
Donald KA, Hampton RY, Fritz IB. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synjournal in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1997,63(9):3341-3344.
URL pmid: 9292983 |
[26] |
Schempp FM, Drummond L, Buchhaupt M, et al. Microbial cell factories for the production of terpenoid flavor and fragrance compounds[J]. Journal of Agricultural and Food Chemistry, 2018,66(10):2247-2258.
URL pmid: 28418659 |
[27] |
Song TQ, Ding MZ, Zhai F, et al. Engineering Saccharomyces cerevisiae for geranylgeraniol overproduction by combinatorial design[J]. Scientific Reports, 2017,7(1):14991.
URL pmid: 29118396 |
[28] | Wang C, Liwei M, Park JB, et al. Microbial platform for terpenoid production:Escherichia coli and yeast[J]. Frontiers in Microbiology, 2018,9(2460):2460. |
[29] |
Kirby J, Dietzel KL, Wichmann G, et al. Engineering a functional 1-deoxy-D-xylulose 5-phosphate(DXP)pathway in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016,38:494-503.
URL pmid: 27989805 |
[30] | Lv X, Wang F, Zhou P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016,7(1):12851. |
[31] |
Vickers CE, Williams TC, Peng B, et al. Recent advances in synthetic biology for engineering isoprenoid production in yeast[J]. Curr Opin Chem Biol, 2017,40:47-56.
doi: 10.1016/j.cbpa.2017.05.017 URL pmid: 28623722 |
[32] |
Shiba Y, Paradise EM, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metabolic Engineering, 2007,9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005 URL pmid: 17196416 |
[33] |
Lian JZ, Zhao HM. Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering[J]. ACS Synthetic Biology, 2016,5(7):689-697.
URL pmid: 26991359 |
[34] |
Chen R, Yang S, Zhang L, et al. Advanced strategies for production of natural products in yeast[J]. iScience, 2020,23(3):100879.
doi: 10.1016/j.isci.2020.100879 URL pmid: 32087574 |
[35] |
Van-Rossum HM, Kozak BU, Pronk JT, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:Pathway stoichiometry, free-energy conservation and redox-cofactor balancing[J]. Metabolic Engineering, 2016,36:99-115.
doi: 10.1016/j.ymben.2016.03.006 URL pmid: 27016336 |
[36] |
Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016,537(7622):694-697.
doi: 10.1038/nature19769 URL pmid: 27654918 |
[37] |
Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metab Eng, 2015,28:8-18.
URL pmid: 25475893 |
[38] |
Williams TC, Peng B, Vickers CE, et al. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production[J]. Metabolic Engineering Communications, 2016,3:142-152.
doi: 10.1016/j.meteno.2016.05.001 URL pmid: 29468120 |
[39] |
Asadollahi MA, Maury J, Moller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynjournal[J]. Biotechnology and Bioengineering, 2008,99(3):666-677.
URL pmid: 17705244 |
[40] |
Peng B, Plan MR, Chrysanthopoulos P, et al. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017,39:209-219.
URL pmid: 27939849 |
[41] |
Jensen ED, Ferreira R, Jakociunas T, et al. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies[J]. Microbial Cell Factories, 2017,16(1):46.
doi: 10.1186/s12934-017-0664-2 URL pmid: 28298224 |
[42] |
Chen B, Lee HL, Heng YC, et al. Synthetic biology toolkits and applications in Saccharomyces cerevisiae[J]. Biotechnology Advances, 2018,36(7):1870-1881.
URL pmid: 30031049 |
[43] | Williams TC, Espinosa MI, Nielsen LK, et al. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015,14(1):43. |
[44] | Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters[J]. Nature Communications, 2015,6(1):7810. |
[45] |
Rajkumar AS, Liu G, Bergenholm D, et al. Engineering of synthetic, stress-responsive yeast promoters[J]. Nucleic Acids Research, 2016,44(17):e136.
URL pmid: 27325743 |
[46] |
Wang K, Zhao QW, Liu YF, et al. Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces[J]. Frontiers in Bioengineering and Biotechnology 2019,7:304.
URL pmid: 31737622 |
[47] |
Ignea C, Pontini M, Maffei ME, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synthetic Biology, 2014,3(5):298-306.
doi: 10.1021/sb400115e URL pmid: 24847684 |
[48] |
Peng B, Nielsen LK, Kampranis SC, et al. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae[J]. Metab Eng, 2018,47:83-93.
URL pmid: 29471044 |
[49] |
Cheng S, Liu X, Jiang G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019,8(5):968-975.
doi: 10.1021/acssynbio.9b00135 URL pmid: 31063692 |
[50] |
Ignea C, Raadam MH, Motawia MS, et al. Orthogonal monoterpenoid biosynjournal in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019,10(1):3799.
doi: 10.1038/s41467-019-11290-x URL pmid: 31444322 |
[51] |
Mccarty NS, Ledesma AR. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019,37(2):181-197.
URL pmid: 30497870 |
[52] |
Ignea C, Trikka FA, Nikolaidis AK, et al. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase[J]. Metab Eng, 2015,27:65-75.
URL pmid: 25446975 |
[53] | Guo J, Ma XH, Cai Y, et al. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones[J]. New Phytologist, 2016,210(2):525-534. |
[54] |
Luo D, Callari R, Hamberger B, et al. Oxidation and cyclization of casbene in the biosynjournal of Euphorbia factors from mature seeds of Euphorbia lathyris L.[J]. Proc Nat Acad Sci USA, 2016,113(34):E5082-E5089.
doi: 10.1073/pnas.1607504113 URL pmid: 27506796 |
[55] |
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases:an update on perspectives for synthetic application[J]. Trends in Biotechnology, 2012,30(1):26-36.
URL pmid: 21782265 |
[56] |
Paramasivan K, Mutturi S. Progress in terpene synjournal strategies through engineering of Saccharomyces cerevisiae[J]. Critical Reviews in Biotechnology, 2017,37(8):974-989.
doi: 10.1080/07388551.2017.1299679 URL pmid: 28427280 |
[57] |
Kung SH, Lund S, Murarka A, et al. Approaches and recent developments for the commercial production of semi-synthetic artemisinin[J]. Frontiers in Plant Science, 2018,9:87.
doi: 10.3389/fpls.2018.00087 URL pmid: 29445390 |
[58] |
Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006,440(7086):940-943.
doi: 10.1038/nature04640 URL pmid: 16612385 |
[59] | Peplow M. Synthetic biology’s first malaria drug meets market resistance[J]. Nature News, 2016,530(7591):389. |
[60] |
Wong J, De RT, D’espaux L, et al. High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,45:142-148.
doi: 10.1016/j.ymben.2017.12.007 URL pmid: 29247866 |
[61] |
Wong J, D’espaux L, Dev I, et al. De novo synjournal of the sedative valerenic acid in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,47:94-101.
URL pmid: 29545148 |
[62] |
Grewal PS, Modavi C, Russ ZN, et al. Bioproduction of a betalain color palette in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,45:180-188.
URL pmid: 29247865 |
[63] |
Sun W, Xue H, Liu H, et al. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynjournal[J]. ACS Catalysis, 2020,10(7):4253-4260.
doi: 10.1021/acscatal.0c00128 URL |
[64] |
Dai Z, Liu Y, Sun Z, et al. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2alpha hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories[J]. Metabolic Engineering, 2019,51:70-78.
URL pmid: 30339834 |
[65] |
Bathe U, Frolov A, Porzel A, et al. CYP76 oxidation network of abietane diterpenes in lamiaceae reconstituted in yeast[J]. Journal of Agricultural and Food Chemistry, 2019,67(49):13437-13450.
doi: 10.1021/acs.jafc.9b00714 URL pmid: 30994346 |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[3] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[4] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[10] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[11] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[12] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[13] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[14] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[15] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||