Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 247-255.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0555
Previous Articles Next Articles
MU Yong-ying(), WANG Dao-ping, CHEN Ming, QIU Li-juan, PAN Ying-hong()
Received:
2020-05-09
Online:
2020-12-26
Published:
2020-12-22
Contact:
PAN Ying-hong
E-mail:mu_yongying@163.com;panyinghong@caas.cn
MU Yong-ying, WANG Dao-ping, CHEN Ming, QIU Li-juan, PAN Ying-hong. Sample Preparation and Data Analysis Method for Soybean Seed Proteome[J]. Biotechnology Bulletin, 2020, 36(12): 247-255.
液相梯度 | 蛋白 | 肽段 | 二级谱图数 | 肽段-谱图匹配数 |
---|---|---|---|---|
30 min | 709±11 b | 2 890±53 c | 13 015±129 c | 4 747±124 c |
60 min | 1 364 b±4 a | 5 620±22 b | 36 751±173 b | 10 966±30 b |
120 min | 1 396±47 a | 5 771±60 a | 53 129±301 a | 25 256±694 a |
液相梯度 | 蛋白 | 肽段 | 二级谱图数 | 肽段-谱图匹配数 |
---|---|---|---|---|
30 min | 709±11 b | 2 890±53 c | 13 015±129 c | 4 747±124 c |
60 min | 1 364 b±4 a | 5 620±22 b | 36 751±173 b | 10 966±30 b |
120 min | 1 396±47 a | 5 771±60 a | 53 129±301 a | 25 256±694 a |
数据库名称 | 数据库总蛋白条目数 | 鉴定蛋白数 | ||
---|---|---|---|---|
有功能注释 | 无功能注释 | |||
Phytozome:Gmax_275_Wm82.a2.v1 | 88 647 | 1 411 | 560 | |
UniProt:Glycine max_cv.Williams 82 | 88 687 | 1 237 | 753 | |
NCBI:Glycine_max_v2.1 | 88 647 | 1 501 | 457 |
数据库名称 | 数据库总蛋白条目数 | 鉴定蛋白数 | ||
---|---|---|---|---|
有功能注释 | 无功能注释 | |||
Phytozome:Gmax_275_Wm82.a2.v1 | 88 647 | 1 411 | 560 | |
UniProt:Glycine max_cv.Williams 82 | 88 687 | 1 237 | 753 | |
NCBI:Glycine_max_v2.1 | 88 647 | 1 501 | 457 |
[1] |
Jiao C, Gu Z. Itraq-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts[J]. Food Chemistry, 2019,292:372-376.
URL pmid: 31054689 |
[2] |
Pi EX, Qu LQ, Hu JW, et al. Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars[J]. Molecular & Cellular Proteomics, 2016,15(1):266-288.
doi: 10.1074/mcp.M115.051961 URL pmid: 26407991 |
[3] |
Sharma M, Gupta SK, Majumder B, et al. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress[J]. Plant Physiology and Biochemistry, 2018,130:529-541.
URL pmid: 30098585 |
[4] | 牛宁, 李占军, 金素娟, 等. 大豆蛋白质组学研究进展[J]. 中国油料作物学报, 2014,36(5):667-675. |
Niu N, Li ZJ, Jin SJ, et al. Advances in soybean proteomics[J] Chinese Journal of Oil Crop Sciences, 2014,36(5):667-675. | |
[5] |
Barbosa HS, Arruda SCC, Azevedo RA, et al. New insights on proteomics of transgenic soybean seeds:evaluation of differential expressions of enzymes and proteins[J]. Analytical and Bioanalytical Chemistry, 2012,402(1):299-314.
doi: 10.1007/s00216-011-5409-1 URL |
[6] |
Krishnan HB, Neson RL. Proteomic analysis of high protein soybean(Glycine max)accessions demonstrates the contribution of novel glycinin subunits[J]. Journal of Agricultural and Food Chemistry, 2011,59(6):2432-2439.
doi: 10.1021/jf104330n URL |
[7] | 林杨杰, 赵明, 杨生超, 等. 大豆种子蛋白质组样品制备方法研究[J]. 大豆科学, 2016,35(5):810-817. |
Lin YJ, Zhao M, Yang SC, et al. A Study on Sample Preparations for Proteomics of Soybean Seeds[J]. Soybean Science, 2016,35(5):810-817. | |
[8] |
Park ZY, Russell DH. Thermal denaturation:a useful technique in peptide mass mapping[J]. Analytical Chemistry, 2000,72(11):2667-2670.
URL pmid: 10857653 |
[9] | 林勇. 蛋白质组学新方法的建立及其在膜蛋白质组研究中的应用[D]. 长沙:湖南师范大学, 2010. |
Lin Y. Development of new proteomics methods and their applications to the analysis of membrane proteome[D]. Changsha:Hunan Normal University, 2010. | |
[10] | 李倩, 冯钰, 谭敏佳, 等. 赖氨酸c端内切酶/胰蛋白酶顺序酶切在蛋白质组学样本制备中的评估[J]. 分析化学, 2017,45(3):316-321. |
Li Q, Feng Y, Tan MJ, et al. Evaluation of endoproteinase Lys-C/Trypsin sequential digestion used in proteomics sample preparation[J]. Chinese Journal of Analytical Chemistry, 2017,45(3):316-321. | |
[11] |
Wang H, Yang YL, Li YX, et al. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome[J]. J Proteome Res, 2015,14(2):829-838.
doi: 10.1021/pr500882h URL pmid: 25455107 |
[12] |
Woehlbrand L, Rabus R, Blasius B, et al. Influence of nanolc column and gradient length as well as ms/ms frequency and sample complexity on shotgun protein identification of marine bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2017,27(3):199-212.
URL pmid: 28850952 |
[13] | Goodstein DM, Shu S, Howson R, et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012,40(d1):d1178-d1186. |
[14] | 罗静初. uniprot蛋白质数据库简介[J]. 生物信息学, 2019,17(3):131-144. |
Luo JC. A brief introduction to UniProt[J]. Chinese Journal of Bioinformatics, 2019,17(3):131-144. | |
[15] | 饶冬梅. NCBI数据库及其资源的获取[J]. 科技视界, 2013(7):53-54. |
Rao DM. Analysis of resources access on NCBI database[J]. Science & Technology Vision, 2013(7):53-54. | |
[16] |
Natarajan S, Xu CP, Caperna TJ, et al. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins[J]. Anal Biochem, 2005,342(2):214-220.
URL pmid: 15953580 |
[17] |
Wisniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis[J]. Nature Methods, 2009,6(5):359-360.
URL pmid: 19377485 |
[18] |
Cox J, Neuhauser N, Michalski A, et al. Andromeda:a peptide search engine integrated into the maxquant environment[J]. Journal of Proteome Research, 2011,10(4):1794-1805.
URL pmid: 21254760 |
[19] |
Min CW, Gupta R, Agrawal GK, et al. Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach[J]. Expert Rev Proteomics, 2019,16(9):795-804.
URL pmid: 31398080 |
[20] |
Oskuei BK, Yin X, Hashiguchi A, et al. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner[J]. Biochimica et Biophysica Acta-Proteins and Proteomics, 2017,1865(9):1167-1177.
doi: 10.1016/j.bbapap.2017.06.022 URL pmid: 28666670 |
[21] |
Wang X, Khodadadi E, Fakheri B, et al. Organ-specific proteomics of soybean seedlings under flooding and drought stresses[J]. Journal of Proteomics, 2017,162:62-72.
doi: 10.1016/j.jprot.2017.04.012 URL pmid: 28435105 |
[22] |
Wiśniewski JR. Filter-aided sample preparation:the versatile and efficient method for proteomic analysis[J]. Methods Enzymol, 2017,585:15-17.
doi: 10.1016/bs.mie.2016.09.013 URL pmid: 28109427 |
[23] | Jez E, Lestan D. Edta retention and emissions from remediated soil[J]. Chemosphere, 2016,151:202-209. |
[24] | Betancourt LH, Sanchez A, Pla I, et al. Quantitative assessment of urea in-solution lys-c/trypsin digestions reveals superior performance at room temperature over traditional proteolysis at 37 degrees c[J]. Journal of Proteome Research, 2018,17(7):2556-2561. |
[25] | Hakobyan A, Schneider MB, Liesack W, et al. Efficient tandem lysc/trypsin digestion in detergent conditions[J]. Proteomics, 2019,19(20):6. |
[26] |
Erde J, Loo RRO, Loo JA. Enhanced FASP(eFASP)to increase proteome coverage and sample recovery for quantitative proteomic experiments[J]. Journal of Proteome Research, 2014,13(4):1885-1895.
URL pmid: 24552128 |
[27] |
Ni MW, Wang L, Chen W, et al. Modified filter-aided sample preparation(FASP)method increases peptide and protein identifications for shotgun proteomics[J]. Rapid Communications in Mass Spectrometry, 2017,31(2):171-178.
URL pmid: 27794190 |
[28] |
Loraine J, Alhumaidan O, Bottrill AR, et al. Efficient protein digestion at elevated temperature in the presence of sodium dodecyl sulfate and calcium ions for membrane proteomics[J]. Analytical Chemistry, 2019,91(15):9516-9521.
URL pmid: 31259536 |
[29] |
Hsieh EJ, Bereman MS, Durand S, et al. Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples[J]. Journal of the American Society for Mass Spectrometry, 2013,24(1):148-153.
URL pmid: 23197307 |
[30] |
Baba M, Ohyama K, Kishikawa N, et al. Optimization of separation and digestion conditions in immune complexome analysis[J]. Analytical Biochemistry, 2013,443(2):181-186.
doi: 10.1016/j.ab.2013.08.026 URL pmid: 24012793 |
[31] |
Xu P, Duong DM, Peng J. Systematical optimization of reverse-phase chromatography for shotgun proteomics[J]. Journal of Proteome Research, 2009,8(8):3944-3950.
doi: 10.1021/pr900251d URL pmid: 19566079 |
[32] |
Xu XP, Liu H, Tian L, et al. Integrated and comparative proteomics of high-oil and high-protein soybean seeds[J]. Food Chemistry, 2015,172:105-116.
URL pmid: 25442530 |
[1] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[2] | LIU Jing, LI Ya-chao, ZHOU Meng-yan, WU Peng-fei, MA Xiang-qing, LI Ming. Advances in the Studies of Plant Protein Post-translational Modification [J]. Biotechnology Bulletin, 2021, 37(1): 67-76. |
[3] | ZHENG Lu, SHEN Ren-fang, LAN Ping. Research Progress of Plant Lysine Acetylproteome Modified in Non-histone Protein [J]. Biotechnology Bulletin, 2021, 37(1): 77-89. |
[4] | TAN Jun, MOU Yun, ZHOU Guang-pu, ZHOU Yong-shun, XU Jie, GAO Jian-feng. Proteomic Analysis of Desert Chlorella Under Drought Stress [J]. Biotechnology Bulletin, 2018, 34(10): 207-216. |
[5] | FU Chen-xi, XIAO Zi-hua, GAO Fei, ZHOU Yi-jun. Proteomics Analysis of Ammopiptanthus mongolicus Leaves Under Drought Stress [J]. Biotechnology Bulletin, 2017, 33(6): 69-80. |
[6] | PU Li-ping, CHEN Fu-mei, ZHAO Xiu-ling, WANG Huan-jing, HOU Zhen XU, Zhuang-zhuang, ZHANG Peng-fei, ZHANG Ming. Advances on the Proteomics of Bovine Oocyte and Preimplantation Embryo Development [J]. Biotechnology Bulletin, 2017, 33(11): 54-59. |
[7] | WANG Fu-shuang,DONG Shi-rui, WANG Su-ying. Research Progress on the Morphology of Spirulina [J]. Biotechnology Bulletin, 2016, 32(8): 28-33. |
[8] | HUO Chen-min, TANG Wen-qiang. A Review of Plant Cold Signal Transduction Mechanisms [J]. Biotechnology Bulletin, 2016, 32(10): 27-33. |
[9] | Jiang Chao, Zhang Xuewen, Pan Yinghong. Research Progress on Technology ofIn-gelProteinDigestion [J]. Biotechnology Bulletin, 2015, 31(1): 61-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||