[1] Haidar M, Ramdani G, Kennedy EJ, et al.PKA and apicomplexan parasite diseases[J]. Horm Metab Res, 2017, 49(4):296-300. [2] Roskoski RJ.A historical overview of protein kinases and their targeted small molecule inhibitors[J]. Pharmacol Res, 2015, 100:1-23. [3] Tillo SE, Xiong WH, Takahashi M, et al.Liberated PKA catalytic subunits associate with the membrane via myristoylation to preferentially phosphorylate membrane substrates[J]. Cell Rep, 2017, 19(3):617-629. [4] Soberg K, Skalhegg BS.The molecular basis for specificity at the level of the protein kinase a catalytic subunit[J]. Front Endocrinol(Lausanne), 2018, 9:538. [5] Idevall-Hagren O, Barg S, Gylfe E, et al.cAMP mediators of pulsatile insulin secretion from glucose-stimulated single beta-cells[J]. J Biol Chem, 2010, 285(30):23007-18. [6] Villalpando S, Cazevieille C, Fernandez A, et al.Type II PKAs are anchored to mature insulin secretory granules in INS-1 beta-cells and required for cAMP-dependent potentiation of exocytosis[J]. Biochimie, 2016, 125:32-41. [7] Vettorazzi JF, Ribeiro RA, Borck PC, et al.The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells[J]. Metabolism, 2016, 65(3):54-63. [8] Ma X, Guan Y, Hua X.Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic beta-cells[J]. J Diabetes, 2014, 6(5):394-402. [9] Luo G, Kong X, Lu L, et al.Glucagon-like peptide 1 potentiates glucotoxicity-diminished insulin secretion via stimulation of cAMP-PKA signaling in INS-1E cells and mouse islets[J]. Int J Biochem Cell Biol, 2013, 45(2):483-490. [10] Kaihara KA, Dickson LM, Jacobson DA, et al.β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion[J]. Diabetes, 2013, 62(5):1527-1536. [11] Beguin P, Nagashima K, Nishimura M, et al.PKA-mediated phosphorylation of the human K(ATP)channel:separate roles of Kir6. 2 and SUR1 subunit phosphorylation[J]. EMBO J, 1999, 18(17):4722-4732. [12] Castro AJ, Cazarolli LH, de Carvalho FK, et al. Acute effect of 3beta-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis[J]. J Steroid Biochem Mol Biol, 2015, 150:112-122. [13] Rondas D, D’Hertog W, Overbergh L, et al. Glucagon-like peptide-1:modulator of beta-cell dysfunction and death[J]. Diabetes Obes Metab, 2013, 15(S3):185-192. [14] Hussain MA, Porras DL, Rowe MH, et al.Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation[J]. Mol Cell Biol, 2006, 26(20):7747-7759. [15] Zhang Y, Zhen W, Maechler P, et al.Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic beta-cell survival and function via CREB[J]. J Nutr Biochem, 2013, 24(4):638-646. [16] Hui H, Nourparvar A, Zhao X, et al.Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway[J]. Endocrinology, 2003, 144(4):1444-1455. [17] Cognard E, Dargaville CG, Hay DL, et al.Identification of a pathway by which glucose regulates beta-catenin signalling via the cAMP/protein kinase A pathway in beta-cell models[J]. Biochem J, 2013, 449(3):803-811. [18] Lee CH, Chu CS, Tsai HJ, et al.Xanthine-derived KMUP-1 reverses glucotoxicity-activated Kv channels through the cAMP/PKA signaling pathway in rat pancreatic beta cells[J]. Chem Biol Interact, 2018, 279:171-176. [19] Gupta SK, Shukla P.Gene editing for cell engineering:trends and applications[J]. Crit Rev Biotechnol, 2017, 37(5):672-684. [20] Granja S, Marchiq I, Baltazar F, et al.Gene disruption using zinc finger nuclease technology[J]. Methods Mol Biol, 2014, 1165:253-260. [21] Yi P, Li W, Ou G.The application of transcription activator-like effector nucleases for genome editing in C. elegans[J]. Methods, 2014, 68(3):389-396. [22] Javed MR, Sadaf M, Ahmed T, et al.CRISPR-Cas system:history and prospects as a genome editing tool in microorganisms[J]. Curr Microbiol, 2018, 75(12):1675-1683. [23] Xie N, Zhou Y, Sun Q, et al.Novel epigenetic techniques provided by the CRISPR/Cas9 system[J]. Stem Cells Int, 2018, 2018:7834175. [24] Qu L, Li HS, Jiang YH, et al.The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases[J]. Hereditas, 2015, 37(10):974-982. [25] Gaudelli NM, Komor AC, Rees HA, et al.Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [26] Liu DY, Qiu T, Ding XH, et al.Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology[J]. Hereditas, 2016, 38(8):756-764. [27] Lino CA, Harper JC, Carney JP, et al.Delivering CRISPR:a review of the challenges and approaches[J]. Drug Deliv, 2018, 25(1):1234-1257. [28] Ophinni Y, Inoue M, Kotaki T, et al.CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures[J]. Sci Rep, 2018, 8(1):7784. [29] Mollanoori H, Teimourian S.Therapeutic applications of CRISPR/Cas9 system in gene therapy[J]. Biotechnol Lett, 2018, 40(6):907-914. [30] 崔玉军, 李艳君, 颜焱锋, 等. 规律成簇的间隔短回[J]. 微生物学报, 2008, 48(11):1549-1555. [31] Brown A, Guess N, Dornhorst A, et al.Insulin-associated weight gain in obese type 2 diabetes mellitus patients:What can be done?[J]. Diabetes, Obesity and Metabolism, 2017, 19(12):1655-1668. [32] Yao XG, Xu X, Wang GH, et al.BBT improves glucose homeostasis by ameliorating beta-cell dysfunction in type 2 diabetic mice[J]. J Endocrinol, 2015, 224(3):327-341. [33] Yao XG, Chen F, Li P, et al.Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models[J]. J Ethnopharmacol, 2013, 150(1):285-297. [34] Xiao C, Tian Y, Lei M, et al.Synthesis and glucose-stimulate insulin secretion(GSIS)evaluation of vindoline derivatives[J]. Bioorg Med Chem Lett, 2017, 27(5):1316-1318. |