Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 52-59.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0469
Previous Articles Next Articles
ZHANG Miao(), SUN Xiang-rui, XU Chun-ming()
Received:
2020-04-21
Online:
2021-01-26
Published:
2021-01-15
Contact:
XU Chun-ming
E-mail:792151970@qq.com;xucm@th.btbu.edu.cn
ZHANG Miao, SUN Xiang-rui, XU Chun-ming. Research Progress of Approaches in Single Cell RNA Sequencing Data Analysis[J]. Biotechnology Bulletin, 2021, 37(1): 52-59.
[1] |
Goodwin S, McPherson JD, McCombie WR. Coming of age:ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016,17(6):333-351.
URL pmid: 27184599 |
[2] |
Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40:past, present and future[J]. Nature, 2017,550(7676):345-353.
doi: 10.1038/nature24286 URL pmid: 29019985 |
[3] |
See P, Lum J, Chen J, et al. A Single-cell sequencing guide for immunologists[J]. Frontiers in Immunology, 2018,9:2425.
doi: 10.3389/fimmu.2018.02425 URL pmid: 30405621 |
[4] | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 2009,6(5):377-382. |
[5] |
Alessandra DM, Barbara DC . How to design a single-cell RNA-sequencing experiment:pitfalls, challenges and perspectives[J]. Briefings in Bioinformatics, 2018,20(4):1384-1394.
URL pmid: 29394315 |
[6] |
Trapnell C, Pachter L, Salzberg SL. TopHat:discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009,25(9):1105-1111.
URL pmid: 19289445 |
[7] | Dobin A, Davis Carrie A, Schlesinger F, et al. STAR:ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2012,29(1):15-21. |
[8] |
Kim D, Langmead B, Salzberg SL. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015,12(4):357-360.
URL pmid: 25751142 |
[9] |
Engström PG, Steijger T, Sipos B, et al. Systematic evaluation of spliced alignment programs for RNA-seq data[J]. Nature Methods, 2013,10(12):1185-1191.
doi: 10.1038/nmeth.2722 URL pmid: 24185836 |
[10] |
Crinier A, Milpied P, Escalière B, et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice[J]. Immunity, 2018,49(5):971-986.
doi: 10.1016/j.immuni.2018.09.009 URL pmid: 30413361 |
[11] | Darmanis S, Sloan SA, Croote D, et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma[J]. Cell reports, 2017,21(5):1399-1410. |
[12] |
Jiang P, Thomson JA, Stewart R, et al. Quality control of single-cell RNA-seq by SinQC[J]. Bioinformatics, 2016. 32(16):2514-2516.
URL pmid: 27153613 |
[13] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014,15(12):550. |
[14] |
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data[J]. Genome Biology, 2010,11(3):R25.
doi: 10.1186/gb-2010-11-3-r25 URL pmid: 20196867 |
[15] |
Bacher R, Chu LF, Leng N, et al. SCnorm:robust normalization of single-cell RNA-seq data[J]. Nature Methods, 2017,14(6):584-586.
URL pmid: 28418000 |
[16] | Hicks SC, Townes FW, Teng M, et al. Missing data and technical variability in single-cell RNA-sequencing experiments[J]. Biostats, 2018,19(4):562-578. |
[17] |
Van DD, Sharma R, Nainys J, et al. Recovering gene interactions from single-cell data using data diffusion[J]. Cell, 2018,174(3):716-729.
URL pmid: 29961576 |
[18] | Li WV, Li JJ . An accurate and robust imputation method scImpute for single-cell RNA-seq data[J]. Nature Communications, 2018,9(1):997. |
[19] |
Huang M, Wang JS, Torre E, et al. SAVER:gene expression recovery for single-cell RNA sequencing[J]. Nature Methods, 2018,15(7):539-542.
doi: 10.1038/s41592-018-0033-z URL pmid: 29941873 |
[20] |
Gong WM, Kwak IlY, Pota P, et al. DrImpute:imputing dropout events in single cell RNA sequencing data[J]. BMC Bioinformatics, 2018,19(1):220.
URL pmid: 29884114 |
[21] | Talwar D, Mongia A, Sengupta D, et al. AutoImpute:Autoencoder based imputation of single-cell RNA-seq data[J]. Scientific Reports, 2018,8(1):16329. |
[22] |
Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data[J]. Genome Biology, 2020,21(1):12.
doi: 10.1186/s13059-019-1850-9 URL pmid: 31948481 |
[23] |
Risso D, Ngai J, Speed TP, et al. Normalization of RNA-seq data using factor analysis of control genes or samples[J]. Nature Biotechnology, 2014,32(9):896-902.
URL pmid: 25150836 |
[24] | Leek JT. Svaseq:removing batch effects and other unwanted noise from sequencing data[J]. Nucleic Acids Research, 2014,42(21):161. |
[25] | Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015,43(7):47. |
[26] |
Haghverdi L, Lun ATL, Morgan MD, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors[J]. Nature Biotechnology, 2018,36(5):421-427.
URL pmid: 29608177 |
[27] |
Hie B, Bryson B, Berger B, et al. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama[J]. Nature Biotechnology, 2019,37(6):685-691.
URL pmid: 31061482 |
[28] | Zhu S, Qing T, Zheng Y, et al. Advances in single-cell RNA sequencing and its applications in cancer research[J]. Oncotarget, 2017,8(32):53763-53779. |
[29] |
Aljanahi AA, Mark D, Dunbar CE . An introduction to the analysis of single-cell RNA-sequencing data[J]. Molecular Therapy - Methods & Clinical Development, 2018,10:189-196.
doi: 10.1016/j.omtm.2018.07.003 URL pmid: 30094294 |
[30] | Fletcher RB, Diya D, John N. Creating lineage trajectory maps via integration of single-cell RNA-sequencing and lineage tracing[J]. Bioessays, 2018,40(8):56. |
[31] |
Byungjin H, Hyun LJ, Duhee B. Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Experimental & Molecular Medicine, 2018,50(8):96.
URL pmid: 30089861 |
[32] | Alexander P, Vladimir B . Visualization of SNPs with t-SNE[J]. PLoS One, 2013,8(2):e56883. |
[33] |
Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease[J]. Nature, 2020,577(7790):399-404.
doi: 10.1038/s41586-019-1895-7 URL pmid: 31915375 |
[34] | Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol 2019,37:38-44. |
[35] | Wei Z, Shu C, Zhang C, et al. A short review of variants calling for single-cell-sequencing data with applications[J]. The International Journal of Biochemistry & Cell Biology, 2017,92:218-226. |
[36] | Minzhe G, Hui W, Steven PS, et al. SINCERA:A pipeline for single-cell rna-seq profiling analysis[J]. PLoS Computational Biology, 2015,11(11):e1004575. |
[37] | Iacono G, Mereu E, Guillaumet-Adkins A, et al. bigSCale:an analytical framework for big-scale single-cell data[J]. Genome Research, 2018,28(6):878-890. |
[38] |
Lin PJ, Troup M, Ho JWK. CIDR:Ultrafast and accurate clustering through imputation for single-cell RNA-seq data[J]. Genome Biology, 2017,18(1):59.
URL pmid: 28351406 |
[39] |
Xu C, Su ZC. Identification of cell types from single-cell transcriptomes using a novel clustering method[J]. Bioinformatics, 2015,31(12):1974-1980.
URL pmid: 25805722 |
[40] | Grün D, Muraro MJ, Boisset JC, et al. De novo prediction of stem cell identity using single-cell transcriptome data[J]. Cell Stem Cell, 2016,19(2):266-277. |
[41] |
Levine JH, Simonds EF, Bendall SC, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis[J]. Cell, 2015,162(1):184-197.
URL pmid: 26095251 |
[42] | Kiselev VY, Kirschner K, Schaub MT, et al. SC3:consensus clustering of single-cell RNA-seq data[J]. Nature Methods, 2017,14(5):483-486. |
[43] | Ankur S, Elaine YC, Vibhor KAS, et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy[J]. Nature Communications, 2018,9(1):4931. |
[44] | Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis[J]. Nature Methods, 2014,11(7):740-742. |
[45] | Finak G, McDavid A, Yajima M, et al. MAST:a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data[J]. Genome Biology, 2015,16:278. |
[46] |
Qiu X, Hill A, Packer J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nature Methods, 2017,14(3):309-315.
URL pmid: 28114287 |
[47] |
Chen L, Zheng S. BCseq:accurate single cell RNA-seq quantification with bias correction[J]. Nucleic Acids Research, 2018,46(14):e82.
URL pmid: 29718338 |
[48] | Soneson C, Robinson M. Bias, robustness and scalability in single-cell differential expression analysis[J]. Nature Methods, 2018,15(4):255-261. |
[49] |
Halpern KB, Shenhav R, Matcovitch-Natan O, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver[J]. Nature, 2017,542(7641):352-356.
URL pmid: 28166538 |
[50] | Perešíni P, Kuzniar M, Kostic D. Dynamic, Fine-grained data plane monitoring with monocle[J]. IEEE/ACM Transactions on Networking, 2018,26(1):534-547. |
[51] |
Jaehoon S, Daniel AB, Yunhua ZS, et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis[J]. Cell Stem Cell, 2015,17(3):360-372.
doi: 10.1016/j.stem.2015.07.013 URL pmid: 26299571 |
[52] |
Ji ZC, Ji HK. TSCAN:Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis[J]. Nucleic Acids Research, 2016,44(13):e117.
doi: 10.1093/nar/gkw430 URL pmid: 27179027 |
[53] |
Juliá M, Amalio T, Antonio R. Sincell:an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq[J]. Bioinformatics, 2015,31(20):3380-3382.
doi: 10.1093/bioinformatics/btv368 URL pmid: 26099264 |
[54] |
Welch JD, Hartemink AJ, Prins JF. SLICER:inferring branched, nonlinear cellular trajectories from single cell RNA-seq data[J]. Genome Biology, 2016,17(1):106.
doi: 10.1186/s13059-016-0975-3 URL pmid: 27215581 |
[55] |
Manu S, Michelle DT, Shlomit RZ, et al. Wishbone identifies bifurcating developmental trajectories from single-cell data[J]. Nature Biotechnology, 2016,34(6):637-645.
doi: 10.1038/nbt.3569 URL pmid: 27136076 |
[1] | ZHANG Yu-han, FAN Yi, LI Ting-ting, PANG Shuang, LIU Wei, BAI Ke-yu, ZHANG Xi-mei. Microbial Enrichment on Leaf Surface and DNA Extraction Method Based on the Metagenomics Sequencing [J]. Biotechnology Bulletin, 2022, 38(3): 256-263. |
[2] | PENG Yong, CHEN Shang-wu, MA Hui-qin. Differential Expression Analysis of Gene Expression Profiles During Fruit Development and Ripening of Lycium ruthenicum [J]. Biotechnology Bulletin, 2016, 32(11): 144-151. |
[3] | Ren Yanna, Cai Lei, Wu Jianwei, Qian Wei, Zhang Ronghua, Wang Jihua, Tang Shixing. The Expression and Purification of Recombinant Myoglobin and Preparation of Its Quality Control Samples [J]. Biotechnology Bulletin, 2014, 0(8): 189-195. |
[4] | Pan Xiaoming, Liang Xingguo. Principle of Whole Genome Amplification Technology and Its Progress [J]. Biotechnology Bulletin, 2014, 0(12): 47-54. |
[5] | Gan Tian ,Leng Xiangjun, Guo Ting, Hu Jing, Wei Jing, Li Xiaoqin. Cloning and Tissue Expression Analysis of PAX7 Gene in Grass Carp [J]. Biotechnology Bulletin, 2014, 0(11): 152-158. |
[6] | Xing Guofang, Guo Pingyi. Functional Genomics Approaches for the Study of Low Phosphate Responses in Higher Plants [J]. Biotechnology Bulletin, 2013, 0(7): 1-6. |
[7] | Zhang Sheng, Zhao Zhong, Liu Zhaojun, Zhang BoyongZong Jianwei, Zhang Lingling, . Establishment and Application of Two-dimensional Gel Electrophoresis for Proteome from the Phloem of Tetraploid Robinia pseudoacacia [J]. Biotechnology Bulletin, 2013, 0(1): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||