Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 65-71.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1068
Previous Articles Next Articles
QI Yu-hui(), HUANG Chen-yang, ZHANG Li-jiao()
Received:
2021-08-20
Online:
2021-11-26
Published:
2021-12-03
Contact:
ZHANG Li-jiao
E-mail:1612847534@qq.com;zhanglijiao@caas.cn
QI Yu-hui, HUANG Chen-yang, ZHANG Li-jiao. Analysis of XBP1 Transcription Factor in Pleurotus ostreatus by RNAi[J]. Biotechnology Bulletin, 2021, 37(11): 65-71.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
PoXBP1-Spel-F1 | ATGATTGACTCACAGCCGGACT | 克隆 |
PoXBP1-Apal-R1 | TCAGTTGAGGATATTTGACCAA | |
PoXBP1-Spe1-R | CGACTAGTCCGTATGGAGAAT- ATCGGCTAT | |
PoXBP1-Apa1-F | CCGGGCCCATGATTGACTCA- CAGCCGGA | |
PoXBP1-intro-Spe1-R | GGACTAGTGGGAATATGAT- GCGCCGCTGGC | |
PoXBP1-Bg111-F | GAAGATCTTCATGATTGAC- TCACAGCCGGA | |
PoXBP1-qrt-SF1 | ATACAGGGAACATGGATGCC | qPCR引物 |
PoXBP1-qrt-SR1 | ACTTGACCATAACCAGGCTG | |
β-actin-F | AGTCGGTGCCTTGGTTAT | 内参基因 |
β-actin-R | ATACCGACCATCACACCT | |
hyg-F | AGAAGATGTTGGCGACCTC | 检测转化子 |
hyg-R | AGCGAGAGCCTGACCTATTG |
Table 1 Primer sequence
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
PoXBP1-Spel-F1 | ATGATTGACTCACAGCCGGACT | 克隆 |
PoXBP1-Apal-R1 | TCAGTTGAGGATATTTGACCAA | |
PoXBP1-Spe1-R | CGACTAGTCCGTATGGAGAAT- ATCGGCTAT | |
PoXBP1-Apa1-F | CCGGGCCCATGATTGACTCA- CAGCCGGA | |
PoXBP1-intro-Spe1-R | GGACTAGTGGGAATATGAT- GCGCCGCTGGC | |
PoXBP1-Bg111-F | GAAGATCTTCATGATTGAC- TCACAGCCGGA | |
PoXBP1-qrt-SF1 | ATACAGGGAACATGGATGCC | qPCR引物 |
PoXBP1-qrt-SR1 | ACTTGACCATAACCAGGCTG | |
β-actin-F | AGTCGGTGCCTTGGTTAT | 内参基因 |
β-actin-R | ATACCGACCATCACACCT | |
hyg-F | AGAAGATGTTGGCGACCTC | 检测转化子 |
hyg-R | AGCGAGAGCCTGACCTATTG |
Fig.4 Comparison of the relative expression of PoXBP1 gene in different tissues of wild-type strains Different lowercase letters represent significant differences(P<0.05). The same below
菌株 Strain | 菌丝顶端细胞长度 Length of mycelial apical cell/μm | 菌丝顶端细胞直径 Diameter of mycelial apical cell/μm | 菌丝顶端细胞表面积 Surface area of mycelial apical cells/μm2 |
---|---|---|---|
389 | 105 ± 17a | 4.90 ± 0.95 | 500 ± 187a |
RNAipoXBP1-4 | 72 ± 16b | 4.91 ± 1.09 | 348 ± 164b |
RNAipoXBP1-1 | 69 ± 13b | 4.97 ± 0.88 | 321 ± 117b |
Table 2 Comparison of mycelial morphology
菌株 Strain | 菌丝顶端细胞长度 Length of mycelial apical cell/μm | 菌丝顶端细胞直径 Diameter of mycelial apical cell/μm | 菌丝顶端细胞表面积 Surface area of mycelial apical cells/μm2 |
---|---|---|---|
389 | 105 ± 17a | 4.90 ± 0.95 | 500 ± 187a |
RNAipoXBP1-4 | 72 ± 16b | 4.91 ± 1.09 | 348 ± 164b |
RNAipoXBP1-1 | 69 ± 13b | 4.97 ± 0.88 | 321 ± 117b |
Fig.9 Comparison of relative expressions of PoXBP1 gene in different periods and tissues between RNAi strains and wild type * represents significant difference(P<0.05)
[1] |
Han JW, Kim DY, Lee YJ, et al. Transcription factor PdeR is involved in fungal development, metabolic change, and pathogenesis of gray mold Botrytis cinerea[J]. J Agric Food Chem, 2020, 68(34): 9171-9179.
doi: 10.1021/acs.jafc.0c02420 URL |
[2] |
Fu H, Chung KR, Gai Y, et al. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata[J]. Mol Plant Pathol, 2020, 21(10): 1337-1352.
doi: 10.1111/mpp.12982 URL |
[3] |
Wang JJ, Qiu L, Cai Q, et al. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen[J]. Sci Rep, 2015, 5: 10108.
doi: 10.1038/srep10108 URL |
[4] |
Meng L, Lyu X, Shi L, et al. The transcription factor FvHmg1 negatively regulates fruiting body development in Winter Mushroom Flammulina velutipes[J]. Gene, 2021, 785: 145618.
doi: 10.1016/j.gene.2021.145618 URL |
[5] |
Wang W, Wang L, Chen B, et al. Characterization and expression pattern of homeobox transcription factors in fruiting body development of straw mushroom Volvariella volvacea[J]. Fungal Biol, 2019, 123(2): 95-102.
doi: 10.1016/j.funbio.2018.10.008 URL |
[6] | 周烁红, 沈颖越, 蔡为明, 等. 肺形侧耳变温结实相关基因ppcsl-1的克隆及功能预测[J]. 菌物学报, 2016, 35(8): 946-955. |
Zhou SH, Shen YY, Cai WM, et al. Cloning and functional prediction of the Ppcsl 1 related to change-temperature fruiting of Pleurotus pulmonarius[J]. Mycosystema, 2016, 35(8): 946-955. | |
[7] |
Qi YC, Chen HJ, Zhang MK, et al. Identification and expression analysis of Pofst3 suggests a role during Pleurotus ostreatus primordia formation[J]. Fungal Biol, 2019, 123(3): 200-208.
doi: 10.1016/j.funbio.2018.12.008 URL |
[8] |
Chen SY, Yang WT, Jia QM, et al. Pleurotus ostreatus bHLH transcription factors regulate plant growth and development when expressed in Arabidopsis[J]. J Plant Interact, 2017, 12(1): 542-549.
doi: 10.1080/17429145.2017.1400124 URL |
[9] |
Zhao Y, Su H, Zhou J, et al. The APSES family proteins in fungi:Characterizations, evolution and functions[J]. Fungal Genet Biol, 2015, 81: 271-280.
doi: 10.1016/j.fgb.2014.12.003 URL |
[10] |
Sánchez-Gaya V, Casaní-Galdón S, Ugidos M, et al. Elucidating the role of chromatin state and transcription factors on the regulation of the yeast metabolic cycle:a multi-omic integrative approach[J]. Front Genet, 2018, 9: 578.
doi: 10.3389/fgene.2018.00578 pmid: 30555512 |
[11] |
Mai B, Breeden L. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family[J]. Mol Cell Biol, 1997, 17(11): 6491-6501.
doi: 10.1128/MCB.17.11.6491 pmid: 9343412 |
[12] | Chakraborty R, Baek JH, Bae EY, et al. Comparison and contrast of plant, yeast, and mammalian ER stress and UPR[J]. Appl Biol Chem, 2016, 59(3): 337-347. |
[13] |
Tao R, Chen H, Gao C, et al. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast[J]. Cell Res, 2011, 21(11): 1619-1633.
doi: 10.1038/cr.2011.58 URL |
[14] |
Miled C, Mann C, Faye G. Xbp1-mediated repression of CLB gene expression contributes to the modifications of yeast cell morphology and cell cycle seen during nitrogen-limited growth[J]. Mol Cell Biol, 2001, 21(11): 3714-3724.
pmid: 11340165 |
[15] |
Miles S, Li L, Davison J, et al. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state[J]. PLoS Genet, 2013, 9(10): e1003854.
doi: 10.1371/journal.pgen.1003854 URL |
[16] | 王丽宁. 糙皮侧耳过氧化氢酶基因特征分析和功能研究[D]. 北京:中国农业科学院, 2019. |
Wang LN. Characterization and function analysis of catalase genes in Pleurotus ostreatus[D]. Beijing:Chinese Academy of Agricultural Sciences, 2019. | |
[17] | 刘秀明, 邬向丽, 陈强, 等. 高温胁迫对刺芹侧耳菌丝生长及其抗棘孢木霉能力的影响[J]. 菌物学报, 2017, 36(11): 1566-1574. |
Liu XM, Wu XL, Chen Q, et al. Effects of heat stress on Pleurotus eryngii mycelial growth and its resistance to Trichoderma asperellum[J]. Mycosystema, 2017, 36(11): 1566-1574. | |
[18] | 侯志浩, 赵梦然, 陈强, 等. 热胁迫下糙皮侧耳实时荧光定量PCR内参基因的选择[J]. 食用菌学报, 2019, 26(3): 11-18, 157. |
Hou ZH, Zhao MR, Chen Q, et al. Selection of reference genes for real-time quantitative PCR of Pleurotus ostreatus under heat stress[J]. Acta Edulis Fungi, 2019, 26(3): 11-18, 157. | |
[19] | 周烁红. 秀珍菇变温结实相关ppcsl-1基因的克隆及表达分析[D]. 金华:浙江师范大学, 2016. |
Zhou SH. Cloning and expression analysis of the ppcsl-1 gene related to change-temperature fruiting from Pleurotus pulmona-rius[D]. Jinhua:Zhejiang Normal University, 2016. | |
[20] |
Hou L, Wang L, Wu X, et al. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress[J]. BMC Microbiol, 2019, 19(1): 231.
doi: 10.1186/s12866-019-1594-4 URL |
[21] | 左勇涛. 平菇NADPH氢化酶基因NOXA的特性及功能研究[D]. 郑州:河南农业大学, 2013. |
Zuo YT. Studies on the characteristics and function of NADPH oxidase gene NOXA in Pleurotus ostreatus[D]. Zhengzhou:Henan Agricultural University, 2013. | |
[22] |
Borna H, Imani S, Iman M, et al. Therapeutic face of RNAi:in vivo challenges[J]. Expert Opin Biol Ther, 2015, 15(2): 269-285.
doi: 10.1517/14712598.2015.983070 URL |
[23] |
Nakayashiki H, Hanada S, Nguyen BQ, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi[J]. Fungal Genet Biol, 2005, 42(4): 275-283.
pmid: 15749047 |
[24] |
Nguyen QB, Kadotani N, Kasahara S, et al. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system[J]. Mol Microbiol, 2008, 68(6): 1348-1365.
doi: 10.1111/j.1365-2958.2008.06242.x pmid: 18433453 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[9] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[10] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[11] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[12] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[13] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[14] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[15] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||