Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 206-218.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0707
Previous Articles Next Articles
WANG Zhi-xin1(), LU Lei-zhen1, ZHOU Jing-bo1, FENG Cheng-ling1, JIA Zi-wei1, NING Ya-wei1, JIA Ying-min2()
Received:
2020-06-10
Online:
2021-03-26
Published:
2021-04-02
Contact:
JIA Ying-min
E-mail:zhxwang0311@163.com;jiayingmin@btbu.edu.cn
WANG Zhi-xin, LU Lei-zhen, ZHOU Jing-bo, FENG Cheng-ling, JIA Zi-wei, NING Ya-wei, JIA Ying-min. Advance in the Research of the Antifungal Peptides[J]. Biotechnology Bulletin, 2021, 37(3): 206-218.
来源 | 前处理 | 初步分离 | 纯化 | 参考文献 |
---|---|---|---|---|
蜘蛛 | 穿刺取血(放在柠檬酸钠缓冲液中,抗凝血),离心去除血细胞,获得上清液 | 均质、酸化 | 反相高效液相色谱 | [ |
海洋蜗牛 | 均质、离心,获得上清液 | 硫酸铵沉淀、离心、脱盐 | 反相高效液相色谱 | [ |
天南星果 | 果肉清洗风干、乙醇溶液均质、离心,获得上清液 | 有机溶剂(丙酮)沉淀 | 反相高效液相色谱 | [ |
蛹虫草 | 均质,离心,获得上清液 | 离子交换层析、凝胶过滤层析 | 快速蛋白质液相色谱 | [ |
尼泊尔大红豆 | 蒸馏水均质,获得上清液 | 离子交换柱层析、亲和层析 | 快速蛋白质液相色谱 | [ |
苦荞种子 | 磨碎,磷酸盐缓冲液浸提、离心,获得上清液 | 硫酸铵沉淀、透析 | 阴离子交换柱层析、琼脂糖凝胶柱层析、超滤 | [ |
豆树种子 | Tris-HCl溶液均质,离心,获得上清液 | 硫酸铵沉淀、透析 | 离子交换色谱(DEAE-纤维柱)、凝胶过滤色谱 | [ |
乳酸菌IS10 | 发酵液离心,过滤除菌,获得上清液 | 上清液冷冻干燥 | 分子筛层析 | [ |
芽孢杆菌BH072 | 离心、过滤除菌,获得滤液 | 硫酸铵沉淀 | 凝胶过滤色谱、D201阴离子交换树脂 | [ |
内生芽孢杆菌B21 | 过滤,减压浓缩 | 有机溶剂(甲醇)萃取,硅胶柱层析 | 高效液相色谱 | [ |
曲霉菌 | 过滤、离心,获得上清液,耐热性实验 | 热处理,离心,超滤 | 反相高效液相色谱 | [ |
植物乳杆菌TE10 | 离心,过滤除菌,获得无细胞上清液 | 超滤 | 分子筛层析 | [ |
枯草芽孢杆菌CP6 | 离心,获得上清液,100℃灭菌,冻干 | 甲醇抽提 | 离子交换层析、分子筛层析、反相高效液相色谱 | [ |
枯草芽孢杆菌1.88株 | 离心,获得上清液 | 酸沉、乙醇抽提 | 反相高效液相色谱 | [ |
短小芽孢杆菌HN-10 | 离心,获得上清液 | 硫氨酸沉淀、透析 | AB-8大孔吸附树脂、Sephadex G-100凝胶、半制备型反相高效液相色谱 | [ |
解淀粉芽孢杆菌BW-13 | 酸碱处理,离心,获得上清液 | 活性炭吸附 | 离子交换柱层析 | [ |
丝状真菌SIIA-F1108 | 甲醇沉淀,过滤,获得滤液 | 大孔树脂吸附 | 正相硅胶色谱层析、高效液相色谱 | [ |
来源 | 前处理 | 初步分离 | 纯化 | 参考文献 |
---|---|---|---|---|
蜘蛛 | 穿刺取血(放在柠檬酸钠缓冲液中,抗凝血),离心去除血细胞,获得上清液 | 均质、酸化 | 反相高效液相色谱 | [ |
海洋蜗牛 | 均质、离心,获得上清液 | 硫酸铵沉淀、离心、脱盐 | 反相高效液相色谱 | [ |
天南星果 | 果肉清洗风干、乙醇溶液均质、离心,获得上清液 | 有机溶剂(丙酮)沉淀 | 反相高效液相色谱 | [ |
蛹虫草 | 均质,离心,获得上清液 | 离子交换层析、凝胶过滤层析 | 快速蛋白质液相色谱 | [ |
尼泊尔大红豆 | 蒸馏水均质,获得上清液 | 离子交换柱层析、亲和层析 | 快速蛋白质液相色谱 | [ |
苦荞种子 | 磨碎,磷酸盐缓冲液浸提、离心,获得上清液 | 硫酸铵沉淀、透析 | 阴离子交换柱层析、琼脂糖凝胶柱层析、超滤 | [ |
豆树种子 | Tris-HCl溶液均质,离心,获得上清液 | 硫酸铵沉淀、透析 | 离子交换色谱(DEAE-纤维柱)、凝胶过滤色谱 | [ |
乳酸菌IS10 | 发酵液离心,过滤除菌,获得上清液 | 上清液冷冻干燥 | 分子筛层析 | [ |
芽孢杆菌BH072 | 离心、过滤除菌,获得滤液 | 硫酸铵沉淀 | 凝胶过滤色谱、D201阴离子交换树脂 | [ |
内生芽孢杆菌B21 | 过滤,减压浓缩 | 有机溶剂(甲醇)萃取,硅胶柱层析 | 高效液相色谱 | [ |
曲霉菌 | 过滤、离心,获得上清液,耐热性实验 | 热处理,离心,超滤 | 反相高效液相色谱 | [ |
植物乳杆菌TE10 | 离心,过滤除菌,获得无细胞上清液 | 超滤 | 分子筛层析 | [ |
枯草芽孢杆菌CP6 | 离心,获得上清液,100℃灭菌,冻干 | 甲醇抽提 | 离子交换层析、分子筛层析、反相高效液相色谱 | [ |
枯草芽孢杆菌1.88株 | 离心,获得上清液 | 酸沉、乙醇抽提 | 反相高效液相色谱 | [ |
短小芽孢杆菌HN-10 | 离心,获得上清液 | 硫氨酸沉淀、透析 | AB-8大孔吸附树脂、Sephadex G-100凝胶、半制备型反相高效液相色谱 | [ |
解淀粉芽孢杆菌BW-13 | 酸碱处理,离心,获得上清液 | 活性炭吸附 | 离子交换柱层析 | [ |
丝状真菌SIIA-F1108 | 甲醇沉淀,过滤,获得滤液 | 大孔树脂吸附 | 正相硅胶色谱层析、高效液相色谱 | [ |
名称 | 来源 | 生物活性 | 分子质量/Da | 参考文献 |
---|---|---|---|---|
未命名 | 七鳃鳗血浆 | 抗青霉菌、曲霉菌 | 3 000 | [ |
AcICK | 蜜蜂体内 | 抗白僵菌、禾谷镰刀菌 | 6 600 | [ |
LBLP | 蜈蚣 | 抗白色念珠菌、假丝酵母等 | 2 757.6 | [ |
Cm-p1 | 海洋蜗牛 | 抗红色毛癣菌、白色念珠菌、假丝酵母菌、灰霉菌、尖孢镰刀菌、黑曲霉等 | 1 485.26 | [ |
Diapausin-1 | 烟草天蛾幼虫 | 抗酵母菌、黄色镰刀菌、禾谷镰刀菌等 | 5 000 | [ |
Tn-AFP1 | 天南星果 | 抗热带假丝酵母菌 | 1 230 | [ |
Cordymin | 蛹虫草 | 抗玉米小斑病菌、花生球腔菌、立枯丝核菌、白色念珠菌菌丝生长、抗HIV-1逆转录酶和乳腺癌细胞增殖活性 | 10 906.62 | [ |
Eryngin | 食用菌杏鲍菇 | 抗尖孢镰刀菌、花生球腔菌菌丝生长 | 10 000 | [ |
Skh-AMP1 | 木香叶片 | 抗曲霉和念珠菌属真菌 | 2 778.10 | [ |
Pleurostrin | 平菇 | 抗尖孢镰刀菌、花生球腔菌、苹果轮纹病菌菌丝生长 | 7 000 | [ |
SmAMP3 | 鹰嘴豆草 | 抗腐皮镰孢菌、烟草赤星病菌、根腐离蠕孢、灰霉菌 | 3 363.9 | [ |
未命名 | 苦荞种子 | 抗白腐菌、绿色木霉、链格孢霉 | 3 909 | [ |
Campesin | 甘蓝菜种子 | 抗尖孢镰刀菌、花生褐斑病菌,抗HepG2和MCF癌细胞的增殖 | 9 400 | [ |
Ps-AFP1 | 植物种子 | 抗尖孢镰刀菌、白色念珠菌、黑曲霉、土曲霉 | 4 608.20 | [ |
鞭毛蛋白 | 芽孢杆菌BH072 | 抗黑曲霉、尖孢镰刀菌、腐霉菌、灰霉菌 | 3 5615 | [ |
W10 | 地衣芽孢杆菌 | 抗灰霉病菌,具有丝氨酸蛋白酶活性 | 48 794.16 | [ |
AcAFP | 曲霉菌 | 抗尖孢镰刀菌、腐皮镰孢菌、黑曲霉、灰霉菌、番茄早疫病菌 | 5 773 | [ |
PcPAF | 海洋桔青霉W1 | 抗绿色木霉、宛氏拟青霉、长柄链格孢、胶孢炭疽菌 | 约10 000 | [ |
未命名 | 植物乳杆菌TE10 | 抗玉米种子黄曲霉MD3生长 | 664-2 024 | [ |
未命名 | 芽孢杆菌AH-E-1 | 抗13种植物致病真菌和20种人类致病真菌 | 500-1 000 | [ |
P-1 | 短小芽孢杆菌HN-10 | 抗粉红单端孢 | 1 149.14 | [ |
未命名 | 枯草芽孢杆菌B25 | 抗尖孢镰刀菌、棒孢霉菌、茄链格孢菌、葡萄孢菌、胶孢炭疽菌、黑曲霉菌 | 38 708.67 | [ |
名称 | 来源 | 生物活性 | 分子质量/Da | 参考文献 |
---|---|---|---|---|
未命名 | 七鳃鳗血浆 | 抗青霉菌、曲霉菌 | 3 000 | [ |
AcICK | 蜜蜂体内 | 抗白僵菌、禾谷镰刀菌 | 6 600 | [ |
LBLP | 蜈蚣 | 抗白色念珠菌、假丝酵母等 | 2 757.6 | [ |
Cm-p1 | 海洋蜗牛 | 抗红色毛癣菌、白色念珠菌、假丝酵母菌、灰霉菌、尖孢镰刀菌、黑曲霉等 | 1 485.26 | [ |
Diapausin-1 | 烟草天蛾幼虫 | 抗酵母菌、黄色镰刀菌、禾谷镰刀菌等 | 5 000 | [ |
Tn-AFP1 | 天南星果 | 抗热带假丝酵母菌 | 1 230 | [ |
Cordymin | 蛹虫草 | 抗玉米小斑病菌、花生球腔菌、立枯丝核菌、白色念珠菌菌丝生长、抗HIV-1逆转录酶和乳腺癌细胞增殖活性 | 10 906.62 | [ |
Eryngin | 食用菌杏鲍菇 | 抗尖孢镰刀菌、花生球腔菌菌丝生长 | 10 000 | [ |
Skh-AMP1 | 木香叶片 | 抗曲霉和念珠菌属真菌 | 2 778.10 | [ |
Pleurostrin | 平菇 | 抗尖孢镰刀菌、花生球腔菌、苹果轮纹病菌菌丝生长 | 7 000 | [ |
SmAMP3 | 鹰嘴豆草 | 抗腐皮镰孢菌、烟草赤星病菌、根腐离蠕孢、灰霉菌 | 3 363.9 | [ |
未命名 | 苦荞种子 | 抗白腐菌、绿色木霉、链格孢霉 | 3 909 | [ |
Campesin | 甘蓝菜种子 | 抗尖孢镰刀菌、花生褐斑病菌,抗HepG2和MCF癌细胞的增殖 | 9 400 | [ |
Ps-AFP1 | 植物种子 | 抗尖孢镰刀菌、白色念珠菌、黑曲霉、土曲霉 | 4 608.20 | [ |
鞭毛蛋白 | 芽孢杆菌BH072 | 抗黑曲霉、尖孢镰刀菌、腐霉菌、灰霉菌 | 3 5615 | [ |
W10 | 地衣芽孢杆菌 | 抗灰霉病菌,具有丝氨酸蛋白酶活性 | 48 794.16 | [ |
AcAFP | 曲霉菌 | 抗尖孢镰刀菌、腐皮镰孢菌、黑曲霉、灰霉菌、番茄早疫病菌 | 5 773 | [ |
PcPAF | 海洋桔青霉W1 | 抗绿色木霉、宛氏拟青霉、长柄链格孢、胶孢炭疽菌 | 约10 000 | [ |
未命名 | 植物乳杆菌TE10 | 抗玉米种子黄曲霉MD3生长 | 664-2 024 | [ |
未命名 | 芽孢杆菌AH-E-1 | 抗13种植物致病真菌和20种人类致病真菌 | 500-1 000 | [ |
P-1 | 短小芽孢杆菌HN-10 | 抗粉红单端孢 | 1 149.14 | [ |
未命名 | 枯草芽孢杆菌B25 | 抗尖孢镰刀菌、棒孢霉菌、茄链格孢菌、葡萄孢菌、胶孢炭疽菌、黑曲霉菌 | 38 708.67 | [ |
[1] | 燕晓翠, 杨春蕾, 姚大为, 等. 抗菌肽的国内外研究进展[J]. 天津农业科学, 2017,23(5):35-41. |
Yan XC, Yang CL, Yao DW, et al. Research progress on domestic and abroad of antibacterial peptides[J]. Tianjin Agricultural Sciences, 2017,23(5):35-41. | |
[2] |
Choi H, Lee DG. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans[J]. Biochimie, 2014,105:58-63.
URL pmid: 24955933 |
[3] | 闵勇, 刘项羽, 石丽桥, 等. 细菌抗菌肽的研究及其应用前景[J]. 农村经济与科技, 2017,28(S1):179-183. |
Min Y, Liu XY, Shi L Q, et al. Research and application prospect of bacterial antimicrobial peptides[J]. Rural Economy and Science, 2017,28(S1):179-183. | |
[4] | 贾英民, 刘杨柳, 陈洲 . 抗菌肽研究现状及其在食品安全中的应用前景[J]. 食品科学技术学报, 2017,35(6):1-9. |
Jia YM, Liu YL, Chen Z . Research status and application prospect in food safety of antimicrobial peptides[J]. Journal of Food Science and Technology, 2017,35(6):1-9. | |
[5] | NgTB. Peptides and proteins from fungi[J]. Peptides, 2004,25(6):1055-1073. |
[6] | 陈娜 . 芽孢杆菌AH-E-1抗真菌肽的分离纯化、性质及产生条件研究[D]. 天津:天津大学, 2012. |
Chen N . Isolation, purification, characterization and producing conditions of the antifungal peptides produced by Bacillus sp. AH-E-1[D]. Tianjin:Tianjin University, 2012. | |
[7] | Rong S, Xu H, Li L, et al. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast[J]. Pesticide Biochemistry and Physiology, 2020,162:69-77. |
[8] | Luz C, Izzo L, Ritieni A, et al. Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp:An application as biopreservation agent in pita bread[J]. LWT, 2020,118:108717. |
[9] | 廖子龙, 于英威, 唐坤, 等. 农作物中真菌毒素研究进展[J]. 粮油仓储科技通讯, 2019,35(2):47-49. |
Liao ZL, Yu YW, Tang K, et al. Advances in research on mycotoxin in crops[J]. LiangYouCangChuKeJiTongXun, 2019,35(2):47-49. | |
[10] | 王鹏杰, 祁智慧, 张海洋, 等. 多元线性分析在储粮真菌生长预测中应用研究[J]. 中国粮油学报, 2020,35(1):107-112. |
Wang PJ, Qi ZH, Zhang HY, et al. Application of multiple linear analyses in prediction on growth of stored grain fungi[J]. Journal of the Chinese Cereals and Oils Association, 2020,35(1):107-112. | |
[11] | 何晓玥, 刘栋华 . 临床常见真菌感染性皮肤病分类、致病菌生物学特征及发病机制[J]. 皮肤科学通报, 2017,34(5):512-521. |
He XY, Liu DH. Review on cutaneous fungal infection:taxonomy, biological characteristics of pathogenic fungi and pathogenesis[J]. Dermatology Bulletin, 2017,34(5):512-521. | |
[12] | 任晓暾, 方方. 儿童中枢神经系统感染治疗疗程与腰椎穿刺检查系列建议之五——真菌性脑膜炎治疗疗程与腰椎穿刺检查建议[J]. 中国实用儿科杂志, 2020,35(1):12-15. |
Ren XT, Fang F. Course of treatment for CNS infection in children and recommendations for lumbar puncture Five- recommendations and treatment of fungal meningitis and recommendations of lumbar puncture[J]. Chinese Journal of Practical Pediatrics, 2020,35(1):12-15. | |
[13] | Gothe F, Schmautz A, Hausler K, et al. Treating allergic bronchopulmonary aspergillosis with short-term prednisone and itraconazole in cystic fibrosis[J]. The Journal of Allergy and Clinical Immunology:In Practice, 2020. DOI: 10.1016/j.jaip, 2020. 02. 031. |
[14] | 沈冰冰. 玉米茎腐病和大斑病生防菌的筛选及其促生作用的研究[D]. 哈尔滨:东北农业大学, 2019. |
Shen B . Screening of biocontrol bacteria against corn stalk rot and maize leaf blight and their growth promotion[D]. Harbin:Northeast Agricultural University, 2019. | |
[15] | 韩乐乐, 郑丽荣 . 化学合成防腐剂的应用现状及发展趋势[J]. 科技传播, 2016,8(2):85-85, 105. |
Han L, Zheng LR. Application status and development trend of chemical synthetic preservatives[J]. Public Communication of Science & Technology, 2016,8(2):85-85, 105. | |
[16] | Faruck MO, Yusof F, Chowdhury S. An overview of antifungal peptides derived from insect[J]. Peptides, 2016,80:80-88. |
[17] | Nicola AM, Albuquerque P, Paes HC, et al. Antifungal drugs:New insights in research & development[J]. Pharmacology & Therapeutics, 2019,195:21-38. |
[18] | Mabi Chandrika KVS, Sharma S. Promising antifungal agents:A minireview[J]. Bioorganic & Medicinal Chemistry, 2020,115398. |
[19] |
Boman HG. Antibacterial peptides:key components needed in immunity[J]. Cell, 1991,65(2):205-207.
URL pmid: 2015623 |
[20] | 刘秀, 郭中坤, 王可洲 . 抗菌肽来源、分类方式、生物学活性、作用机制及应用研究进展[J]. 中国医药生物技术, 2016,11(6):539-543. |
Liu X, Guo ZK, Wang KZ. Research progress in sources, classification, biological activity, mechanism of action and application of antimicrobial peptides[J]. Chinese Medicinal Biotechnology, 2016,11(6):539-543. | |
[21] | Al Souhail Q, Hiromasa Y, Rahnamaeian M, et al. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta[J]. Developmental & Comparative Immunology, 2016,61:258-268. |
[22] | Maistrou S, Paris V, Jensen AB, et al. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana[J]. Developmental & Comparative Immunology, 2018,86:26-33. |
[23] | 丁云超, 张士璀 . 海洋动物抗菌肽研究进展[J]. 中国海洋药物, 2013,32(6):87-96. |
Ding YC, Zhang SC. Antimicrobial peptides from marine invertebrates and fish[J]. Chinese Journal of Marine Drugs, 2013,32(6):87-96. | |
[24] | Rose WM, Ourth DD. Isolation of lysozyme and an antifungal peptide from sea lamprey(Petromyzon marinus)plasma[J]. Veterinary Immunology and Immunopathology, 2009,132(2):264-269. |
[25] | Carlos LA, Alba A, Silva ON, et al. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail cenchritis muricatus[J]. Biochimie, 2012,94(4):968-974. |
[26] | Choi H, Hwang JS, Lee DG. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans[J]. Biochimica et Biophysica Acta(BBA)- Biomembranes, 2013,1828(11):2745-2750. |
[27] | Park HG, Kyung SS, Lee KS, et al. Dual function of a bee(Apis cerana)inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin[J]. Developmental & Comparative Immunology, 2014,47(2):247-253. |
[28] | Tian C, Gao B, Fang Q, et al. Antimicrobial peptide-like genes in Nasonia vitripennis:a genomic perspective[J], 2010,11:187. |
[29] | Zhang Z, Zhu S. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species[J]. Developmental and Comparative Immunology, 2012,38(2):262-274. |
[30] | Riciluca KCT, Sayegh RSR, Melo RL, et al. Rondonin an antifungal peptide from spider(Acanthoscurria rondoniae)haemolymph[J]. Results in Immunology, 2012,2:66-71. |
[31] | Lin P, Xia L, Ng TB. First isolation of an antifungal lipid transfer peptide from seeds of a Brassica species[J]. Peptides, 2007,28(8):1514-1519. |
[32] | Lin P, Wong JH, Xia L, et al. Campesin, a thermostable antifungal peptide with highly potent antipathogenic activities[J]. Journal of Bioscience and Bioengineering, 2009,108(3):259-265. |
[33] | 白承之, 王转花, 李玉英 . 一种苦荞抗真菌肽的纯化及抑菌活性分析[J]. 食品科学, 2010,31(15):4-7. |
Bai CZ, Wang ZH, Li YY. Purification and activity of an antifungal peptide from the seeds of Tartary Buckwheat(Fagopyrum tataricum)[J]. Food Science, 2010,31(15):4-7. | |
[34] | Ruan JJ, Chen H, Shao JR, et al. An antifungal peptide from Fagopyrum tataricum seeds[J]. Peptides, 2011,32(6):1151-1158. |
[35] |
Mandal SM, Migliolo L, Franco OL, et al. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation[J]. Peptides, 2011,32(8):1741-1747.
URL pmid: 21736910 |
[36] | Wong JH, Ng TB. Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean(Gymnocladus chinensis Baill)[J]. Peptides, 2003,24(7):963-968. |
[37] | Ma DZ, Wang HX, Ng TB. A peptide with potent antifungal and antiproliferative activities from Nepalese large red beans[J]. Peptides, 2009,30(12):2089-2094. |
[38] | Khani S, Seyedjavadi SS, Zare-Zardini H, et al. Isolation and functional characterization of an antifungal hydrophilic peptide, Skh-AMP1, derived from Satureja khuzistanica leaves[J]. Phytochemistry, 2019,164:136-143. |
[39] | Rogozhin EA, Slezina MP, Slavokhotova AA, et al. A novel antifungal peptide from leaves of the weed Stellaria media L.[J]. Biochimie, 2015,116:125-132. |
[40] | Wong JH, Ng TB, Wang H, et al. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris[J]. Phytomedicine, 2011,18(5):387-392. |
[41] | Solanki DS, Kumar S, Parihar K, et al. Characterization of a novel seed protein of Prosopis cineraria showing antifungal activity[J]. International Journal of Biological Macromolecules, 2018,116:16-22. |
[42] | 于杰, 张荣意, 谭志琼, 等. 枯草芽孢杆菌B25抗真菌作用及抗菌蛋白的分离纯化[J]. 基因组学与应用生物学, 2016,35(3):629-634. |
Yu J, Zhang RY, Tan ZQ, et al. Studies on antifungal activity and purification of antifungal substance from Bacillus subtilis B25 strain[J]. Genomics and Applied Biology, 2016,35(3):629-634. | |
[43] | Ji ZL, Peng S, Chen LL, et al. Identification and characterization of a serine protease from Bacillus licheniformis W10:A potential antifungal agent[J]. International Journal of Biological Macromolecules, 2020,145:594-603. |
[44] | Naing KW, Lee YS, Nguyen XH, et al. Isolation and characterization of an antimicrobial lipopeptide produced by Paenibacillus ehimensis MA2012[J]. Journal of Basic Microbiology, 2014,54:1-12. |
[45] |
Skouri-gargouri H, Gargouri A. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus[J]. Peptides, 2008,29(11):1871-1877.
URL pmid: 18687373 |
[46] | Wang H, Ng TB. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii[J]. Peptides, 2004,25(1):1-5. |
[47] | Chu KT, Xia L, Ng TB. Pleurostrin, an antifungal peptide from the oyster mushroom[J]. Peptides, 2005,26(11):2098-2103. |
[48] | 程亮, 罗明明, 吴继纲, 等. 海洋放线菌Y12-26中抗真菌活性代谢产物的分离纯化与结构鉴定[J]. 中国抗生素杂志, 2017,42(8):631-638. |
Cheng L, Luo M, Wu JG, et al. Purifi cation and structure elucidation of antifungal bioactive metabolites from marine actinomycete Y12-26[J]. Chinese Journal of Antibiotics, 2017,42(8):631-638. | |
[49] | 马桂珍, 吴少杰, 付泓润, 等. 海洋放线菌BM-2菌株抗真菌活性物质的分离纯化与结构鉴定[J]. 中国生物防治学报, 2014,30(3):393-401. |
Ma GZ, Wu SJ, Fu HR, et al. Isolation and structure elucidation of antifungal metabolites from marine actinomycete BM-2[J]. Chinese Journal of Biological Control, 2014,30(3):393-401. | |
[50] | 钱英, 汪琨, 章小洪, 等. 解淀粉芽孢杆菌BW-13产生的抗真菌物质特性研究与初步分离纯化[J]. 浙江工业大学学报, 2012,40(1):42-45, 64. |
Qian Y, Wang K, Zhang XH, et al. Characterization and prefractionation of antifungal substance produced by Bacillus amylolique faciens BW-13[J]. Journal of Zhejiang University of Technology, 2012,40(1):42-45, 64. | |
[51] | 夏敏杰, 张静, 黄迎春, 等. 枯草芽胞杆菌1. 88株抗真菌物质的分离纯化与性质研究[J]. 现代预防医学, 2010,37(16):3108-3111, 3117. |
Xia MJ, Zhang J, Huang YC, et al. Study on the mix culture and character of antifungal composition from Bacillus subtilis strain 1. 88[J]. Modern Preventive Medicine, 2010,37(16):3108-3111, 3117. | |
[52] |
Zhao X, Zhou ZJ, Han Y, et al. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey[J]. Microbiological Research, 2013,168(9):598-606.
doi: 10.1016/j.micres.2013.03.001 URL pmid: 23545354 |
[53] | Rong S, Xu H, Li L, et al. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast[J]. Pesticide Biochemistry and Physiology, 2020,162:69-77. |
[54] | 严海娇, 贠建民, 白杰, 等. 短小芽孢杆菌HN-10抗菌肽的分离纯化及其抗粉红单端孢活性[J]. 食品科学, 2018,39(22):123-128. |
Yan HJ, Yun JM, Bai J, et al. Purification of an antimicrobial peptide from Bacillus pumilus HN-10 and its inhibitory activity against Trichothecium roseum[J]. Food Science, 2018,39(22):123-128. | |
[55] | Garibotto F M, Garro A D, Masman M F, et al. New small-size peptides possessing antifungal activity[J]. Bioorganic & Medicinal Chemistry, 2010,18(1):158-167. |
[56] | 罗振华, 吴建伟, 付萍, 等. 人工合成家蝇抗真菌肽MAF-1A体外抗真菌效果及扫描电镜观察[J]. 时珍国医国药, 2014,25(3):532-536. |
Luo ZH, Wu JW, Fu P, et al. Antifungal effect and scanning electron microscopy for the synthetic Musca domestica Antifungal Peptide-1A(MAF-1A)[J]. Lishizhen Medicine and Materia Medica Research, 2014,25(3):532-536. | |
[57] | 陈明明. 家蝇抗真菌肽MAF-1A的分子改良及抗白色念珠菌活性的研究[D]. 贵阳:贵州医科大学, 2016. |
Chen MM. Study on the molecular modification and anti-canidia albicans activity of Musca domestica Antifungal Peptide-1A(MAF-1A)[D]. Guiyang:Guizhou Medical University, 2016. | |
[58] | Fernandez Bidondo L, Almasia N, Bazzini A, et al. The overexpression of antifungal genes enhances resistance to rhizoctonia solani in transgenic potato plants without affecting arbuscular mycorrhizal symbiosis[J]. Crop Protection, 2019,124:104837. |
[59] | Banzet N, Latorse MP, Bulet P, et al. Expression of insect cystein-rich antifungal peptides in transgenic tobacco enhances resistance to a fungal disease[J]. Plant Science, 2002,162(6):995-1006. |
[60] | Sang YX, Deng XJ, Yang WY, et al. Secretive expression of insect antifungal peptide-encoded genes in Pichia pastoris and activity assay of the products[J]. Agricultural Sciences in China, 2007,6(10):1209-1216. |
[61] | 薛辉, 涂勇刚, 熊春红, 等. 抗菌肽快速筛选方法的研究进展[J]. 食品科学, 2019,40(13):334-339. |
Xue H, Tu YG, Xiong CH, et al. Recent progress in rapid screening methods for antibacterial peptides[J]. Food Science, 2019,40(13):334-339. | |
[62] | 唐文婷. 基于肽—膜相互作用的模拟细胞膜法筛选抗菌肽的研究[D]. 无锡:江南大学, 2014. |
Tang WT. Research of screening for antimicrobial peptides by mimic cell membrane based on peptide-membrane interaction[D]. Wuxi:Jiangnan University, 2014. | |
[63] | Marie K, Hana S. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides’ activity on various yeast species[J]. Journal of Biotechnology, 2016,233:26-33. |
[64] | Muhialdin BJ, Hassan Z, Bakar FA, et al. Identification of antifungal peptides produced by Lactobacillus plantarum IS10 grown in the MRS broth[J]. Food Control, 2016,59:27-30. |
[65] | Muhialdin BJ, Algboory HL, Kadum H, et al. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds[J]. Food Control, 2020,109:106898. |
[66] | 辛磊, 李秀玲, 安慧, 等. 枯草芽孢杆菌CP6抗真菌活性物质的分离纯化[J]. 广西蚕业, 2018,55(2):12-17. |
Xin L, Li XL, An H, et al. Isolation and purification of the antifungal substance activity of Bacillus subtilis CP6[J]. Guangxi Sericulture, 2018,55(2):12-17. | |
[67] | 孟慧云, 杨渊, 王欣荣, 等. 丝状真菌SIIA-F1108产生抗真菌物质的分离纯化和结构鉴定[J]. 中国抗生素杂志, 2015,40(12):901-905. |
Meng HY, Yang Y, Wang XR, et al. Isolation and structure identification of antifungal compounds produced by the filamentous fungi SIIA-F1108[J]. Chinese Journal of Antibiotics, 2015,40(12):901-905. | |
[68] | Mandal SM, Porto WF, Dey P, et al. The attack of the phytopathogens and the trumpet solo:Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern[J]. Biochimie, 2013,95(10):1939-1948. |
[69] | 文超 . 海洋桔青霉W1抗真菌蛋白的分离纯化与特性研究[D]. 厦门:厦门大学, 2014. |
Wen C. Purification and characterization of an antifungal protein secreted by Penicillium citrinum W1[D]. Xiamen:Xiamen University, 2014. | |
[70] | 张宇, 姜宁, 张爱忠 . 抗菌肽抑菌机理及其研究方法[J]. 现代畜牧兽医, 2018(1):52-57. |
Zhang Y, Jiang N, Zhang AZ. Bacteriostatic mechanism and research methods of antibacterial peptides[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2018(1):52-57. | |
[71] | Mizuhara N, Kuroda M, Ogita A, et al. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin[J]. Bioorganic & Medicinal Chemistry, 2011,19(18):5300-5310. |
[72] | 高霞 . 抗真菌肽APS的制备、生物活性及其抗真菌机理研究[D]. 成都:四川大学, 2005. |
Gao X. Study on the preparation, biological activity and antifungal mechanism of antifungal peptide APS[D]. Chengdu:Sichuan University, 2005. | |
[73] |
Boheim G. Statistical analysis of alamethicin channels in black lipid membranes[J]. The Journal of Membrane Biology, 1974,19(3):277-303.
URL pmid: 4475108 |
[74] |
Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides[J]. Peptides, 2001,22(10):1629-1641.
doi: 10.1016/s0196-9781(01)00498-3 URL pmid: 11587791 |
[75] | Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochimica et Biophysica Acta(BBA)- Biomembranes, 1999,1462(1):55-70. |
[76] | Jin PF, Haonan W, Zheng T, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz[J]. Pesticide Biochemistry and Physiology, 2020,163:102-107. |
[77] | Han Y, Zhao J, Zhang B, et al. Effect of a novel antifungal peptide P852 on cell morphology and membrane permeability of Fusarium oxysporum[J]. Biochimica et Biophysica Acta(BBA)- Biomembranes, 2019,1861(2):532-539. |
[78] | Lee MR, Raman N, Ortiz-Bermúdez, P, et al. 14-Helical β-Peptides elicit toxicity against C. albicans by forming pores in the cell membrane and subsequently disrupting intracellular organelles[J]. Cell Chemical Biology, 2019,26(2):289-299. |
[79] | Victoria B, Alicia R, Alberto M, et al. Development of a multiplex qPCR method for simultaneous quantification in dry-cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxin-producing moulds[J]. Elsevier Ltd, 2014,36(1):257-265. |
[80] | Han J, Gao P, Zhao S, et al. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus[J]. Elsevier BV, 2017,150:130-140. |
[81] | Han J, Wang F, Gao P, et al. Mechanism of action of AMP-jsa9, a LI-F-type antimicrobial peptide produced by Paenibacillus polymyxa JSa-9, against Fusarium moniliforme[J]. Fungal Genetics and Biology, 2017,104:45-55. |
[1] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[2] | ZHANG Feng-wen, ZHOU Li-ya, DONG Chao, SHI Yan-mao. Purification of Antioxidant Peptides from Natto Supernatant and Study on Its Activity [J]. Biotechnology Bulletin, 2022, 38(2): 158-165. |
[3] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[4] | ZHANG Qing-fang, PANG Fei, YU Shuang, XIAO Jing-hui, DOU Shao-hua, CHI Nai-yu. Screening and Identification of High Uricase-producting Strain from Marine and the Enzymatic Properties [J]. Biotechnology Bulletin, 2019, 35(7): 61-69. |
[5] | LIU Na, DU Pan-pan, YANG Yang, LI Xiao-mao. Research Progress on Exosomes Isolation Methods Based on Microfluidics Technology [J]. Biotechnology Bulletin, 2019, 35(1): 207-213. |
[6] | QIN Ri-tian, XIE Zhan-ling. Isolation,Purification,Characterization and Structural Analysis of a Pectinase PGL1 Produced by Fusarium sp. Q7-31T [J]. Biotechnology Bulletin, 2018, 34(4): 151-160. |
[7] | Zhu Licheng, Luo Hui, Ren Han. Progress in Structure Function and Antifungal Mechanism of Plant Defensins [J]. Biotechnology Bulletin, 2014, 0(3): 9-14. |
[8] | Ran Ganqiao, Wang Nan, Dai Jiakun, Zhao Wenjuan, Ren Ping, Qin Tao. Colonization of Bacillus subtilis BS24 on the Apple Leaf Surface and Their Effects on the Leaf Microbial Flora [J]. Biotechnology Bulletin, 2013, 0(10): 131-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||