Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 127-136.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1107
Previous Articles Next Articles
PAN Lan-jia1,2(), LI Jie2, LIN Qing-huai1, WANG Yin2()
Received:
2020-09-01
Online:
2021-04-26
Published:
2021-05-13
Contact:
WANG Yin
E-mail:ljpan@iue.ac.cn;yinwang@iue.ac.cn
PAN Lan-jia, LI Jie, LIN Qing-huai, WANG Yin. Polyhydroxybutyrate Production from Mixed Waste Cooking Oil by Cupriavidus necator[J]. Biotechnology Bulletin, 2021, 37(4): 127-136.
脂肪酸Fatty acid | 含量Content/% |
---|---|
十六烷酸Palmitic acid(C16:0) | 14.887 |
十八烷酸Stearic acid(C18:0) | 4.097 |
十八碳烯酸Octadecenoic acid(C18:1) | 31.000 |
亚麻酸Linolenic acid(C18:3) | 28.380 |
亚油酸Linoleic acid(C18:2) | 18.086 |
其他Others | 3.550 |
Table 1 Fatty acid content of the waste cooking oil
脂肪酸Fatty acid | 含量Content/% |
---|---|
十六烷酸Palmitic acid(C16:0) | 14.887 |
十八烷酸Stearic acid(C18:0) | 4.097 |
十八碳烯酸Octadecenoic acid(C18:1) | 31.000 |
亚麻酸Linolenic acid(C18:3) | 28.380 |
亚油酸Linoleic acid(C18:2) | 18.086 |
其他Others | 3.550 |
Fig. 2 Effect of temperature on the cell dry weight of strain C. necator and PHB synthesis Different capital letters represent significant difference (P < 0.05); different lowercase letters represent the percentage of PHB has significant difference (P < 0.05), the same below
模式 Mode | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content/wt% | PHB/(g·L-1) |
---|---|---|---|
M1 | 10.75 | 76.75 | 8.25 |
M2 | 7.62 | 86.88 | 6.62 |
M3 | 6.79 | 82.06 | 5.57 |
Table 2 Bacterial cell and PHB production under different fermentation modes
模式 Mode | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content/wt% | PHB/(g·L-1) |
---|---|---|---|
M1 | 10.75 | 76.75 | 8.25 |
M2 | 7.62 | 86.88 | 6.62 |
M3 | 6.79 | 82.06 | 5.57 |
循环 Circulation | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content /wt% | PHB/(g·L-1) |
---|---|---|---|
1 | 10.75 | 76.75 | 8.25 |
2 | 12.38 | 76.77 | 9.50 |
3 | 11.10 | 76.22 | 8.46 |
4 | 12.12 | 77.36 | 9.38 |
Table 3 Experiment results of fermentation model 1
循环 Circulation | 菌体干重 Cell dry weight/(g·L-1) | PHB含量 PHB content /wt% | PHB/(g·L-1) |
---|---|---|---|
1 | 10.75 | 76.75 | 8.25 |
2 | 12.38 | 76.77 | 9.50 |
3 | 11.10 | 76.22 | 8.46 |
4 | 12.12 | 77.36 | 9.38 |
菌种Strain | 碳源Carbon source | Mn /kD | Mw /kD | PDI | 熔化温度 Melting temperature/℃ | 分解温度Decomposition temperature/℃ | 参考文献Reference |
---|---|---|---|---|---|---|---|
B. thailandensis | 餐厨废油 Waste cooking oil | 179 | 511 | 2.86 | 166.4 | 279.3 | [17] |
C. necator DSM428 | 餐厨废油 Waste cooking oil | 110 | 170 | 1.5 | 168.6 | - | [19] |
咖啡渣油 Coffee residue oil | - | 234 | 1.2 | 172.3 | - | [20] | |
C. necator(CGMCC 1.7092) | 混合餐厨废油 Mixed waste cooking oil | 20 | 30 | 1.44 | 175.7 | 285.5 | 本研究 This study |
Table 4 Molecular weight distribution and thermodynamic properties of PHB synthesized by bacteria
菌种Strain | 碳源Carbon source | Mn /kD | Mw /kD | PDI | 熔化温度 Melting temperature/℃ | 分解温度Decomposition temperature/℃ | 参考文献Reference |
---|---|---|---|---|---|---|---|
B. thailandensis | 餐厨废油 Waste cooking oil | 179 | 511 | 2.86 | 166.4 | 279.3 | [17] |
C. necator DSM428 | 餐厨废油 Waste cooking oil | 110 | 170 | 1.5 | 168.6 | - | [19] |
咖啡渣油 Coffee residue oil | - | 234 | 1.2 | 172.3 | - | [20] | |
C. necator(CGMCC 1.7092) | 混合餐厨废油 Mixed waste cooking oil | 20 | 30 | 1.44 | 175.7 | 285.5 | 本研究 This study |
[1] |
Zainab LI, Uyama H, Li C, et al. Production of polyhydroxyalkanoates from underutilized plant oils by Cupriavidus necator[J]. CLEAN Soil, Air, Water, 2018,46(11):1700542.
doi: 10.1002/clen.v46.11 URL |
[2] |
Bandeira PPC, Nunes JMN, Rodrigues PR, et al. Evaluation of Polyhydroxyalkanoates production by Cupriavidus necator and Burkholderia cepacia strains using sunflower seed and oil[J]. Waste and Biomass Valorization, 2020,11(4):1271-1278.
doi: 10.1007/s12649-018-0463-y URL |
[3] | Raza ZA, Abid S, Banat IM. Polyhydroxyalkanoates:Characteristics, production, recent developments and applications[J]. International Biodeterioration & Biodegradation, 2018,126:45-56. |
[4] |
Dalsasso RR, Pavan FA, Bordignon SE, et al. Polyhydroxybutyrate(PHB)production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate[J]. Process Biochemistry, 2019,85:12-18.
doi: 10.1016/j.procbio.2019.07.007 pmid: WOS:000488654200002 |
[5] | 罗孟君, 熊运新, 曾明慧, 等. 国内外餐厨废油的危害与资源化处理现状研究[J]. 广州化工, 2017,45(16):149-150, 188. |
Luo MJ, Xiong YX, Zeng MH, et al. Study on hazards and resourceful treatment of kitchen waste oil[J]. Guangzhou Chemical Industry, 2017,45(16):149-150, 188. | |
[6] |
Lopez-Cuellar MR, Alba-Flores J, Rodriguez JN, et al. Production of polyhydroxyalkanoates(PHAs)with canola oil as carbon source[J]. International Journal of Biological Macromolecules, 2011,48(1):74-80.
doi: 10.1016/j.ijbiomac.2010.09.016 URL |
[7] |
Obruca S, Marova I, Snajdar O, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate[J]. Biotechnology Letters, 2010,32(12):1925-1932.
doi: 10.1007/s10529-010-0376-8 URL |
[8] |
Obruca S, Benesova P, Oborna J, et al. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate)production from oils by Cupriavidus necator[J]. Biotechnology Letters, 2014,36(4):775-781.
doi: 10.1007/s10529-013-1407-z URL |
[9] |
Kahar P, Tsuge T, Taguchi K, et al. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain[J]. Polymer Degradation and Stability, 2004,83(1):79-86.
doi: 10.1016/S0141-3910(03)00227-1 URL |
[10] |
Nascimento LL, Neves Nunes JM, Rodrigues PR, et al. Bioconversion of residual soybean oil into polyhydroxyalkanoates[J]. Journal of Applied Polymer Science, 2018,135(19):46255.
doi: 10.1002/app.46255 URL |
[11] |
Park DH, Kim BS, Production of poly(3-hydroxybutyrate)and poly(3-hydroxybutyrate-co-4-hydroxybutyrate)by Ralstonia eutropha from soybean oil[J]. New Biotechnology, 2011,28(6):719-724.
doi: 10.1016/j.nbt.2011.01.007 pmid: 21333767 |
[12] |
Sudesh K, Bhubalan K, Chuah JA, et al. Synjournal of polyhydroxyalkanoate from palm oil and some new applications[J]. Applied Microbiology and Biotechnology, 2011,89(5):1373-1386.
doi: 10.1007/s00253-011-3098-5 pmid: 21279347 |
[13] |
Verlinden RAJ, Hill DJ, Kenward MA, et al. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator[J]. AMB Express, 2011,1(1):11.
doi: 10.1186/2191-0855-1-11 pmid: 21906352 |
[14] | 种宇轩, 任连海, 王攀. 利用煎炸废油合成PHA的工艺条件探讨[J]. 绿色科技, 2016,10:65-67, 71. |
Chong YX, Ren LH, Wang P. Fermentation condition factors influence of a PHA producing strain biosynjournal PHA by using waste fried oil[J]. Journal of Green Science and Technology, 2016,10:65-67, 71. | |
[15] |
Cruz MV, Sarraguça MC, Freitas F, et al. Online monitoring of P(3HB)produced from used cooking oil with near-infrared spectroscopy[J]. Journal of Biotechnology, 2015,194:1-9.
doi: 10.1016/j.jbiotec.2014.11.022 URL |
[16] |
Hahn SK, Chang YK, Kim BS, et al. Optimization of microbial poly(3-hydroxybutyrate)recover using dispersions of sodium hypochlorite solution and chloroform[J]. Biotechnology and Bioengineering, 1994,44(2):256-261.
doi: 10.1002/(ISSN)1097-0290 URL |
[17] |
Kourmentza C, Costa J, Azevedo Z, et al. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids[J]. Bioresource Technology, 2018,247:829-837.
doi: S0960-8524(17)31703-0 pmid: 30060419 |
[18] |
Yousuf RG, Winterburn JB. Waste date seed oil extract as an alternative feedstock for Poly(3-hydroxybutyrate)synjournal[J]. Biochemical Engineering Journal, 2017,127:68-76.
doi: 10.1016/j.bej.2017.08.007 URL |
[19] |
Cruz MV, Freitas F, Paiva A, et al. Valorization of fatty acids-containing wastes and byproducts into short-and medium-chain length polyhydroxyalkanoates[J]. New Biotechnology, 2016,33(1):206-215.
doi: 10.1016/j.nbt.2015.05.005 URL |
[20] |
Cruz MV, Paiva A, Lisboa P, et al. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology[J]. Bioresource Technology, 2014,157:360-363.
doi: 10.1016/j.biortech.2014.02.013 URL |
[21] |
Pan LJ, Tang XD, Li CX, et al. Biodegradation of sulfamethazine by an isolated thermophile-Geobacillus sp. S-07[J]. World Journal of Microbiology & Biotechnology, 2017,33:85.
doi: 10.1007/s11274-017-2245-2 URL |
[22] | 任连海, 刘慧, 张明露. Cupriavidus necator(DSM428)利用地沟油合成PHA的条件优化[J]. 环境工程学报, 2016,10(6):3166-3172. |
Ren LH, Liu H, Zhang ML. Optimizing fermentation conditions for polyhydroxyalkanoates synjournal from waste oil by Cupriavidus necator(DSM428)[J]. Chinese Journal of Environmental Engineering, 2016,10(6):3166-3172. | |
[23] |
Khunthongkaew P, Murugan P, Sudesh K, et al. Biosynjournal of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production[J]. Journal of Polymer Research, 2018,25(6):131.
doi: 10.1007/s10965-018-1521-7 URL |
[24] |
Ng KS, Ooi WY, Goh LK, et al. Evaluation of jatropha oil to produce poly(3-hydroxybutyrate)by Cupriavidus necator H16[J]. Polymer Degradation and Stability, 2010,95(8):1365-1369.
doi: 10.1016/j.polymdegradstab.2010.01.021 URL |
[25] | Cruz MV, Gouveia AR, Dionísio M, et al. A process engineering approach to improve production of P(3HB)by Cupriavidus necator from used cooking oil[J]. International Journal of Polymer Science, 2019(9):1-7. |
[26] |
Obruca S, Petrik S, Benesova P, Svoboda Z, et al. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates[J]. Applied Microbiology and Biotechnology, 2014,98:5883-5890.
doi: 10.1007/s00253-014-5653-3 URL |
[27] |
Obruca S, Snajdar O, Svoboda Z, et al. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil[J]. World Journal of Microbiology and Biotechnology, 2013,29(12):2417-2428.
doi: 10.1007/s11274-013-1410-5 URL |
[28] | 尹进, 车雪梅, 陈国强. 聚羟基脂肪酸酯的研究进展[J]. 生物工程学报, 2016,32(6):726-737. |
Yin J, Che XM, Chen GQ. Progress on polyhydroxyalkanoates(PHA)[J]. Chinese Journal of Biotechnology, 2016,32(6):726-737. | |
[29] | Fadzil FIB M, Tsuge T. Bioproduction of polyhydroxyalkanoate from plant oils[M]// Kalia VC. Microbial Applications Vol.2. Cham: Springer, 2017: 231-260. |
[30] | 许辅乾, 嗜热螯台球菌产聚羟基脂肪酸酯的研究[D]. 广州:华南理工大学, 2014. |
Xu FQ, Study on the production of polyhydroxyalkanoates by the thermophilic Chelatococcus daeguensis TAD1[D]. Guangzhou:South China University of Technology, 2014. | |
[31] | Zhu C, Nomura CT, Perrotta JA, et al. Production and characteriza-tion of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkho-lderia cepacia ATCC 17759[J]. Biotechnology Progress, 2010,26(2):424-430. |
[1] | CHEN Qiao, WU Hai-ying, WANG Zong-shou, XIE Yu-kang, LI Yi-qing, SUN Jun-song. Multiple-site Mutations in Escherichia coli Capable of High-density Growing Induced from the Biosynthesis of Polyhydroxybutyrate [J]. Biotechnology Bulletin, 2020, 36(7): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||