Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 248-254.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0075
Previous Articles Next Articles
JIANG Yu-qi(), SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun()
Received:
2021-01-18
Online:
2021-09-26
Published:
2021-10-25
Contact:
WANG Ai-jun
E-mail:jiangyuqi1133@163.com;ajwang6174@126.com
JIANG Yu-qi, SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun. Recent Progress in Molecular Mechanism of Interaction Between Rice and Tilletia horrida[J]. Biotechnology Bulletin, 2021, 37(9): 248-254.
Fig.2 Morphological characteristics of rice T. horrida A: Colony morphology of rice kernel smut after 3 d on PSA. B: Colony morphology of rice kernel smut after 15 d on PSA. C: Winter spore morphology. D: Morphology of secondary microspores. E: single nuclear mycelium stained with 4', 6-diamidino-2-phenylindole (DAPI) after culture on PDA medium for 5 d, observed using a fluorescence microscope[6,23]
[1] | 蔡良俊, 徐敬洪, 沈超, 等. 杂交水稻新组合蓉7优528在成都的高产栽培技术[J]. 杂交水稻, 2019, 34(6):44-46. |
Cai LJ, Xu JH, Shen C, et al. High-yielding cultivation techniques of new hybrid rice combination Rong 7 You 528 in Chengdu[J]. Hybrid Rice, 2019, 34(6):44-46. | |
[2] | 沈超, 徐敬洪, 蔡良俊, 等. 高产优质杂交水稻新品种蓉7优523的选育及应用[J]. 种子, 2019, 38(9):115-117. |
Shen C, Xu JH, Cai LJ, et al. Breeding and application of new hybrid rice variety Rong 7 You 523 with high yield and high quality[J]. Seed, 2019, 38(9):115-117. | |
[3] | 潘学贤, 程开禄, 黄富, 等. 杂交稻制种粒黑粉病的侵染源及发生规律[J]. 植物保护学报, 1995, 22(4):289-296. |
Pan XX, Cheng KL, Huang F, et al. Studies on source of inoculum of kernel smut and its occurrence on hybridization rice[J]. J Of plant Prot, 1995, 22(4):289-296. | |
[4] | Biswas A. Kernel smut disease of rice:current status and future challenges[J]. Frontiers in Ecology and the Environment, 2003, 21:336-351. |
[5] | R VG, Webster RK, Gunnell PS. Compendium of rice diseases[J]. Mycologia, 1992, 84(6):953. |
[6] | 王爱军, 江波, 富蓉, 等. 水稻稻粒黑粉病病原菌鉴定及致病性测定[J]. 植物病理学报, 2018, 48(3):297-304. |
Wang AJ, Jiang B, Fu R, et al. Identification and pathogenicity of pathogen causing kernel smut on rice[J]. Acta Phytopathol Sin, 2018, 48(3):297-304. | |
[7] |
Carris LM, Castlebury LA, Goates BJ. Nonsystemic bunt fungi—— Tilletia indica and T. horrida:a review of history, systematics, and biology[J]. Annu Rev Phytopathol, 2006, 44:113-133.
pmid: 16480336 |
[8] | Rogerson CT. Illustrated genera of smut fungi[J]. Brittonia, 1988, 40(1):107. |
[9] | 戴雷, 张道环, 于立繁, 等. 水稻粒黑粉病研究进展[J]. 中国农学通报, 2011, 27(12):261-265. |
Dai L, Zhang DH, Yu LF, et al. Advance in rice kernel smut[J]. Chin Agric Sci Bull, 2011, 27(12):261-265. | |
[10] | Singh RA, Pavgi MS. Development of sorus in kernel bunt of rice[J]. Riso, 1973, 22(3):243-250. |
[11] | 欧SH. 水稻病害[M]. 北京: 农业出版社, 1981. |
Ou SH. Rice Diseases[M]. Beijing: Agricultural Press, 1981. | |
[12] |
Brooks SA, Anders MM, Yeater KM. Effect of cultural management practices on the severity of false smut and kernel smut of rice[J]. Plant Dis, 2009, 93(11):1202-1208.
doi: 10.1094/PDIS-93-11-1202 URL |
[13] | Whitney NG. Effect of fungicide applications on kernel smut of rice[J]. Plant Disease, 1977, 61(5):379-381. |
[14] |
Takahashi Y. On Ustilago virens Cooke and a New Species of Tilletia parasitic on Rice-plant[J]. Shokubutsugaku Zasshi, 1896, 10(109):en16-en20.
doi: 10.15281/jplantres1887.10.109_16 URL |
[15] | 朱建清, 周开达, 陶家凤. 稻粒黑粉菌侵染水稻不育系的细胞学研究[J]. 西南农业学报, 1998, 11(1):67-72. |
Zhu JQ, Zhou KD, Tao JF. Cytological study on Neovossia horrida infection in male sterile lines of rice[J]. Southwest China J Agric Sci, 1998, 11(1):67-72. | |
[16] | 陶家凤, 周开达, 朱建清. 稻粒黑粉菌对水稻不育系的侵染过程[J]. 西南农业学报, 1998, 11(2):68-72. |
Tao JF, Zhou KD, Zhu JQ. Infection process of Neovossia horrida in male sterile rice[J]. Southwest China J Agric Sci, 1998, 11(2):68-72. | |
[17] | 邵见阳, 张祥喜, 林姗姗. 稻粒黑粉菌生物学特性研究[J]. 江西农业学报, 1997, 9(4):27-32. |
Shao JY, Zhang XX, Lin SS. Study on biological characteristics of Neovossia horrida[J]. Acta Agric Jiangxi, 1997, 9(4):27-32. | |
[18] | Templeton GE. Local infection of rice florets by the rice kernel smut organism, Tilletia horrida[J]. Phytopathology, 1961, 51(2):131-132. |
[19] | 左震东. 水稻研讨论文集[M]. 合肥: 中国科学技术大学出版社, 1990. |
Zuo ZD. Proceedings of the Rice Research Symposium[M]. Hefei: University of Science and Technology of China Press, 1990. | |
[20] | 滕彬, 李光尧, 腾久生, 等. 培矮64S系列组合制种稻粒黑粉病发生原因分析及防治对策[J]. 种子, 2002, 21(6):81,83. |
Teng B, Li GY, Teng JS, et al. Analysis of the causes and control measures of rice kernel smut in combination with Peiai 64S series[J]. Seed, 2002, 21(6):81,83. | |
[21] | 刘慧. 我国稻粒黑粉病的研究进展[J]. 江西植保, 2008, 31(1):3-6. |
Liu H. Research advance on Neovossia horrida in rice[J]. Jiangxi Plant Prot, 2008, 31(1):3-6. | |
[22] | 王中康, 欧阳秩. 稻粒黑粉菌生物学特性研究[J]. 西南农业大学学报, 1989, 11(4):331-335. |
Wang ZK, Ouyang Z. Studies on the pathogbnic biology of the kernel smut of rice[J]. J Southwest Agric Univ, 1989, 11(4):331-335. | |
[23] |
Wang A, Pang L, Wang N, et al. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics[J]. Sci Rep, 2018, 8(1):15413.
doi: 10.1038/s41598-018-33752-w URL |
[24] | Wang N, Ai P, Tang YF, et al. Draft genome sequence of the rice kernel smut Tilletia horrida strain QB-1[J]. Genome Announc, 2015, 3(3):e00621-e00615. |
[25] | Kumagai T, Ishii T, Terai G, et al. Genome sequence of Ustilaginoidea virens IPU010, a rice pathogenic fungus causing false smut[J]. Genome Announc, 2016, 4(3):e00306-16. |
[26] | 舒新月, 江波, 马丽, 等. 不同侵染时间点稻粒黑粉病菌的转录组分析[J]. 草业学报, 2020, 29(9):190-202. |
Shu XY, Jiang B, Ma L, et al. Transcriptome analysis of Tilletia horrida at different infection time points[J]. Acta Prataculturae Sin, 2020, 29(9):190-202. | |
[27] | 韩彦卿, 韩渊怀, 等. 水稻幼穗与Ustilaginoidea virens互作早期的转录组分析[J]. 植物病理学报, 2019, 49(3):296-305. |
Han YQ, Han YH, et al. Transcriptomic analysis of early interaction between rice young spikelets and Ustilaginoidea virens[J]. Acta Phytopathol Sin, 2019, 49(3):296-305. | |
[28] |
Zhang N, Yang J, Fang A, et al. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region[J]. Mol Plant Pathol, 2020, 21(4):445-459.
doi: 10.1111/mpp.12894 pmid: 32087618 |
[29] |
Wang D, Tian L, et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahlia[J]. Mol Plant Pathol, 2020, 21(5):667-685.
doi: 10.1111/mpp.12921 pmid: 32314529 |
[30] |
Wang A, Pan L, Niu X, et al. Comparative secretome analysis of different smut fungi and identification of plant cell death-inducing secreted proteins from Tilletia horrida[J]. BMC Plant Biol, 2019, 19(1):360.
doi: 10.1186/s12870-019-1924-6 URL |
[31] | 盘林秀, 王娜, 王爱军, 等. 稻粒黑粉病菌实时荧光定量PCR内参基因筛选[J]. 植物病理学报, 2018, 48(5):640-647. |
Pan LX, Wang N, Wang AJ, et al. Selection of reference genes for quantitative real-time PCR in Tilletia horrida[J]. Acta Phytopathol Sin, 2018, 48(5):640-647. | |
[32] |
Chen Y, Yang X, et al. Simple and rapid detection of Tilletia horri-da causing rice kernel smut in rice seeds[J]. Sci Rep, 2016, 6:33258.
doi: 10.1038/srep33258 pmid: 27624858 |
[33] | 王爱军, 殷得所, 富蓉, 等. 78个水稻不育系对稻粒黑粉病的抗性评价[J]. 植物病理学报, 2018, 48(2):207-212. |
Wang AJ, Yin DS, Fu R, et al. Evaluation of resistance to rice kernel smut in seventy-eight species of rice sterile lines[J]. Acta Phytopathol Sin, 2018, 48(2):207-212. | |
[34] |
Zhang K, Li YJ, Li TJ, et al. Pathogenicity genes in Ustilaginoidea virens revealed by a predicted protein-protein interaction network[J]. J Proteome Res, 2017, 16(3):1193-1206.
doi: 10.1021/acs.jproteome.6b00720 pmid: 28099032 |
[35] |
Wang A, Zha Z, et al. Comparative transcriptome analysis of Tilletia horrida infection in resistant and susceptible rice(Oryza sativa L.)male sterile lines reveals potential candidate genes and resistance mechanisms[J]. Genomics, 2020, 112(6):5214-5226.
doi: 10.1016/j.ygeno.2020.09.036 URL |
[36] |
Jain M, Tyagi AK, Khurana JP. Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice(Oryza sativa)[J]. BMC Plant Biol, 2006, 6:1.
doi: 10.1186/1471-2229-6-1 URL |
[37] |
Zhao H, Ma B, et al. The GDSL lipase MHZ11 modulates ethylene signaling in rice roots[J]. Plant Cell, 2020, 32(5):1626-1643.
doi: 10.1105/tpc.19.00840 URL |
[38] |
Wang Q, Zhang W, Yin Z, et al. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development[J]. J Exp Bot, 2013, 64(16):4863-4875.
doi: 10.1093/jxb/ert272 pmid: 24006427 |
[39] |
Zhang Y, Zhang K, Fang A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics[J]. Nat Commun, 2014, 5:3849.
doi: 10.1038/ncomms4849 pmid: 24846013 |
[40] |
Song JH, Wei W, Lv B, et al. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary[J]. Environ Microbiol, 2016, 18(11):3840-3849.
doi: 10.1111/1462-2920.13343 URL |
[41] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[42] |
Fan J, Guo XY, Li L, et al. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes[J]. J Integr Plant Biol, 2015, 57(6):577-590.
doi: 10.1111/jipb.v57.6 URL |
[43] |
Dhua U, Dhua SR, Sahu RK. Precise disease severity assessment for false smut disease of rice[J]. J Phytopathol, 2015, 163(11/12):931-940.
doi: 10.1111/jph.12395 URL |
[44] |
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes Dev, 1996, 10(21):2696-2706.
doi: 10.1101/gad.10.21.2696 URL |
[45] |
Mayorga ME, Gold SE. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence[J]. Mol Microbiol, 1999, 34(3):485-497.
pmid: 10564490 |
[46] | 刘连盟, 王玲, 黄雯雯, 等. 水稻稻曲病菌G蛋白β亚基基因的克隆、表达与序列分析[J]. 中国水稻科学, 2010, 24(4):353-359. |
Liu LM, Wang L, Huang WW, et al. Cloning, expression and sequence analysis of G protein β subunit gene of rice false smut pathogen Ustilaginoidea virens[J]. Chin J Rice Sci, 2010, 24(4):353-359. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[5] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[6] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[7] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[10] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[11] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[12] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[13] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[14] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[15] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||