Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 156-167.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0158
Previous Articles Next Articles
MIAO Yu-jiao(), ZHU Long-jiao, XU Wen-tao()
Received:
2022-02-09
Online:
2022-12-26
Published:
2022-12-29
Contact:
XU Wen-tao
E-mail:miaoyujiao99@163.com;xuwentao@cau.edu.cn
MIAO Yu-jiao, ZHU Long-jiao, XU Wen-tao. Novel Matrixes for Mass Spectrometry Imaging and Research Progress of It in Analyzing Biological Samples[J]. Biotechnology Bulletin, 2022, 38(12): 156-167.
基质名称 Name of matrix | 目标分析物类别 Target analyte class | 离子模式 Ion mode | 特点Characteristic | 沉积方法 Deposition method | 参考文献 Reference | |
---|---|---|---|---|---|---|
有机小分子新型基质 Novel organic small molecule matrix | N-苯基-2-萘胺(PNA) N-Phenyl-2-naphthylamine | 脂质、氨基酸、抗氧化剂、 | / | 强紫外线吸收、低基质背景信号、强耐盐能力 | 喷涂 Spray | [ |
N-(1-萘基)乙二胺二盐酸盐(NEDC)N-(1-Naphthyl)ethylenediamine dihydrochloride | 葡萄糖、Na+、K+、氨基酸、核苷酸、抗氧化剂、甘油磷脂 | / | 强耐盐能力,基质背景信号低,提高了对分析物类别的灵敏度 | 喷涂 Spray | [ | |
3-氨基邻苯二甲酰肼(3-APH) 3-Aminophthalhydrazide | 核苷酸、脂质 | +,- | 双极性、高灵敏度、分子覆盖范围广、低基质背景信号、真空稳定性好 | 喷涂 Spray | [ | |
IR-780 | 高分子量脂质 | / | 强紫外吸收、强光热能力、强耐盐能力、共结晶均匀、低背景信号、高真空稳定性 | 喷涂 Spray | [ | |
1,6-二苯基-1,3,5-己三烯(DPH)1,6-Diphenyl-1,3,5-hexatriene | 脂肪酸、多烯结构的脂类 | / | 高真空稳定性、高空间分 辨率 | 升华 Sublimation | [ | |
1,1'-联萘-2,2'-二胺(BNDM) 1,1'-Binaphthyl-2,2'-diamine | 氨基酸、有机酸、核苷、核苷酸、含氮碱基、胆固醇、多肽、脂肪酸、胆碱、肉碱、多胺、肌酸、磷脂等 | +,- | 双极性、低基质背景信号、高灵敏度、广泛的分子覆盖范围 | 喷涂 Spray | [ | |
2,3-二氰基氢醌(DCH) 2,3-Dicyanohydroquinone | 脂质 | + | 高真空稳定性、高空间分辨率、高化学稳定性、高灵敏度 | 喷涂 Spray | [ | |
DCTB(2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) | 中枢神经系统药物 | + | 高灵敏度,低信号抑制 | 喷涂 Spray | [ | |
3,4-二甲氧基肉桂酸(DMCA) 3,4-Dimethoxycinnamic acid | 小分子 | + | 低基质背景信号、高灵敏度、分子覆盖范围广 | 喷涂 Spray | [ | |
1,5-二氨基萘(DAN) 1,5-Diaminonaphthalene | 脂质、酚类物质如原花色素及其单体等小分子 | - | 低激光能量、最小化发射次数、数据采集速度快、基质沉积均匀、在细胞水平保存特定组织学信息 | 升华 Sublimation | [ | |
2-氰基-3-(2-噻吩基)丙烯酸(CTA)2-Cyano-3-(2-thienyl)acrylic acid | 脂质、蛋白质、多肽、正离子模式下的糖类、天然产物(即环烯醚萜)、聚乙二醇、有机金属 | +,- | 高信噪比和分辨率、可以用作分析大多数类别分析物的通用基质、提供组织表面的完整轮廓 | 升华 Sublimation | [ | |
咖啡酸(CA)Caffeic acid | 高分子量蛋白质 | / | 强紫外线吸收、接近20 kDa的超宽检测范围、高电离 效率 | 升华 Sublimation | [ | |
无机纳米材料新型基质 Novel inorganic nano material matrix | 金纳米粒子(AuNPs) Gold nanoparticles | 神经递质(单胺类或乙酰胆碱类物质)、氯虫苯甲酰胺、嘧菌酯 | / | 高电离效率、增强了丰度低小分子类物质的成像信号、高空间分辨率,横向分辨率达到 5 μm(单细胞水平) | 喷涂 Spray | [ |
银纳米粒子(AgNPs) Silver nanoparticles | 脂质如脂肪酸、甘油磷脂、鞘脂、甾醇以及一些小代谢物分子 | ﹢ | 通过银的选择性阳离子化来提高含有 π 键的分析物的电离效率 | 喷涂 Spray | [ | |
氧化石墨烯(GO) Graphene oxide | 脂质等小分子、黄芩苷-灯盏花乙素 | ﹢,- | 高电离效率、增强丰度低小分子类物质的成像信号、低基质背景信号 | 喷涂 Spray | [ | |
氧化锌纳米粒子(ZnO NPs) Zinc oxide nanoparticles | 低分子量分子 | ﹢ | 在酸性pH值中溶解,定期酸洗可有效减少喷雾器喷嘴堵塞、结果高重现性 | 喷涂 Spray | [ | |
改性二氧化钛纳米线(TiO2) Modified titanium dioxide nanowire | 低分子量代谢物(长春花生物碱) | ﹢ | 高选择性、高检测限、修改程序简单且具有成本效益、适用于复杂的天然生物样品 | / | [ | |
硅纳米柱阵列(NAPA) Silicon nanopost array | 中性脂质如甘油三酯、胆固醇酯、己糖神经酰胺和一些小代谢物;聚羟基丁酸、聚谷氨酸和多糖寡 聚物 | +,- | 允许分离异构体、信号强度增加、均匀性好、和传统基质MALDI-MSI 平台之间实现脂质覆盖的互补性 | / | [ | |
层状双氢氧化物(LDH) Layered double hydroxide | 低分子量酚类物质 | - | 高稳定性、氢键促进分析物电离、优先检测以羟基为主的分析物 | 喷涂 Spray | [ |
Table 1 Summary of the novel matrixes used in MALDI-MSI in recent years
基质名称 Name of matrix | 目标分析物类别 Target analyte class | 离子模式 Ion mode | 特点Characteristic | 沉积方法 Deposition method | 参考文献 Reference | |
---|---|---|---|---|---|---|
有机小分子新型基质 Novel organic small molecule matrix | N-苯基-2-萘胺(PNA) N-Phenyl-2-naphthylamine | 脂质、氨基酸、抗氧化剂、 | / | 强紫外线吸收、低基质背景信号、强耐盐能力 | 喷涂 Spray | [ |
N-(1-萘基)乙二胺二盐酸盐(NEDC)N-(1-Naphthyl)ethylenediamine dihydrochloride | 葡萄糖、Na+、K+、氨基酸、核苷酸、抗氧化剂、甘油磷脂 | / | 强耐盐能力,基质背景信号低,提高了对分析物类别的灵敏度 | 喷涂 Spray | [ | |
3-氨基邻苯二甲酰肼(3-APH) 3-Aminophthalhydrazide | 核苷酸、脂质 | +,- | 双极性、高灵敏度、分子覆盖范围广、低基质背景信号、真空稳定性好 | 喷涂 Spray | [ | |
IR-780 | 高分子量脂质 | / | 强紫外吸收、强光热能力、强耐盐能力、共结晶均匀、低背景信号、高真空稳定性 | 喷涂 Spray | [ | |
1,6-二苯基-1,3,5-己三烯(DPH)1,6-Diphenyl-1,3,5-hexatriene | 脂肪酸、多烯结构的脂类 | / | 高真空稳定性、高空间分 辨率 | 升华 Sublimation | [ | |
1,1'-联萘-2,2'-二胺(BNDM) 1,1'-Binaphthyl-2,2'-diamine | 氨基酸、有机酸、核苷、核苷酸、含氮碱基、胆固醇、多肽、脂肪酸、胆碱、肉碱、多胺、肌酸、磷脂等 | +,- | 双极性、低基质背景信号、高灵敏度、广泛的分子覆盖范围 | 喷涂 Spray | [ | |
2,3-二氰基氢醌(DCH) 2,3-Dicyanohydroquinone | 脂质 | + | 高真空稳定性、高空间分辨率、高化学稳定性、高灵敏度 | 喷涂 Spray | [ | |
DCTB(2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) | 中枢神经系统药物 | + | 高灵敏度,低信号抑制 | 喷涂 Spray | [ | |
3,4-二甲氧基肉桂酸(DMCA) 3,4-Dimethoxycinnamic acid | 小分子 | + | 低基质背景信号、高灵敏度、分子覆盖范围广 | 喷涂 Spray | [ | |
1,5-二氨基萘(DAN) 1,5-Diaminonaphthalene | 脂质、酚类物质如原花色素及其单体等小分子 | - | 低激光能量、最小化发射次数、数据采集速度快、基质沉积均匀、在细胞水平保存特定组织学信息 | 升华 Sublimation | [ | |
2-氰基-3-(2-噻吩基)丙烯酸(CTA)2-Cyano-3-(2-thienyl)acrylic acid | 脂质、蛋白质、多肽、正离子模式下的糖类、天然产物(即环烯醚萜)、聚乙二醇、有机金属 | +,- | 高信噪比和分辨率、可以用作分析大多数类别分析物的通用基质、提供组织表面的完整轮廓 | 升华 Sublimation | [ | |
咖啡酸(CA)Caffeic acid | 高分子量蛋白质 | / | 强紫外线吸收、接近20 kDa的超宽检测范围、高电离 效率 | 升华 Sublimation | [ | |
无机纳米材料新型基质 Novel inorganic nano material matrix | 金纳米粒子(AuNPs) Gold nanoparticles | 神经递质(单胺类或乙酰胆碱类物质)、氯虫苯甲酰胺、嘧菌酯 | / | 高电离效率、增强了丰度低小分子类物质的成像信号、高空间分辨率,横向分辨率达到 5 μm(单细胞水平) | 喷涂 Spray | [ |
银纳米粒子(AgNPs) Silver nanoparticles | 脂质如脂肪酸、甘油磷脂、鞘脂、甾醇以及一些小代谢物分子 | ﹢ | 通过银的选择性阳离子化来提高含有 π 键的分析物的电离效率 | 喷涂 Spray | [ | |
氧化石墨烯(GO) Graphene oxide | 脂质等小分子、黄芩苷-灯盏花乙素 | ﹢,- | 高电离效率、增强丰度低小分子类物质的成像信号、低基质背景信号 | 喷涂 Spray | [ | |
氧化锌纳米粒子(ZnO NPs) Zinc oxide nanoparticles | 低分子量分子 | ﹢ | 在酸性pH值中溶解,定期酸洗可有效减少喷雾器喷嘴堵塞、结果高重现性 | 喷涂 Spray | [ | |
改性二氧化钛纳米线(TiO2) Modified titanium dioxide nanowire | 低分子量代谢物(长春花生物碱) | ﹢ | 高选择性、高检测限、修改程序简单且具有成本效益、适用于复杂的天然生物样品 | / | [ | |
硅纳米柱阵列(NAPA) Silicon nanopost array | 中性脂质如甘油三酯、胆固醇酯、己糖神经酰胺和一些小代谢物;聚羟基丁酸、聚谷氨酸和多糖寡 聚物 | +,- | 允许分离异构体、信号强度增加、均匀性好、和传统基质MALDI-MSI 平台之间实现脂质覆盖的互补性 | / | [ | |
层状双氢氧化物(LDH) Layered double hydroxide | 低分子量酚类物质 | - | 高稳定性、氢键促进分析物电离、优先检测以羟基为主的分析物 | 喷涂 Spray | [ |
离子源 Ion source | 基质辅助激光解吸电离质谱成像 MALDI MSI | 二次离子质谱成像 SIMS MSI | 解吸电喷雾电离质谱成像 DESI MSI |
---|---|---|---|
电离类型Ionization type | 软 | 硬 | 软 |
是否需要基质Need matrix or not | 是 | 否 | 否 |
可检测物质类型 The type of substance that can be detected | 小分子代谢物和药物、生物大分子如多肽、蛋白质、核酸、聚糖等 | 元素、小分子代谢物和药物、脂类 | 小分子代谢物和药物、脂类、多肽 |
质量范围Mass range/Da | 300-100 000 | <2 000 | 100-2 000 |
空间分辨率Spatial resolution/μm | 5-100 | 0.1-1 | 40-200 |
扫描深度Depth of the scanning/μm | 0.1-20 | 0.5-10 | 1-50 |
Table 2 Comparison of three methods of MSI
离子源 Ion source | 基质辅助激光解吸电离质谱成像 MALDI MSI | 二次离子质谱成像 SIMS MSI | 解吸电喷雾电离质谱成像 DESI MSI |
---|---|---|---|
电离类型Ionization type | 软 | 硬 | 软 |
是否需要基质Need matrix or not | 是 | 否 | 否 |
可检测物质类型 The type of substance that can be detected | 小分子代谢物和药物、生物大分子如多肽、蛋白质、核酸、聚糖等 | 元素、小分子代谢物和药物、脂类 | 小分子代谢物和药物、脂类、多肽 |
质量范围Mass range/Da | 300-100 000 | <2 000 | 100-2 000 |
空间分辨率Spatial resolution/μm | 5-100 | 0.1-1 | 40-200 |
扫描深度Depth of the scanning/μm | 0.1-20 | 0.5-10 | 1-50 |
[1] |
Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples:localization of peptides and proteins using MALDI-TOF MS[J]. Anal Chem, 1997, 69(23):4751-4760.
pmid: 9406525 |
[2] |
Fernández-Vega A, Chicano-Gálvez E, Prentice BM, et al. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders[J]. Talanta, 2020, 219:121184.
doi: 10.1016/j.talanta.2020.121184 URL |
[3] |
Zhang YX, Zhao XB, Ha W, et al. Spatial distribution analysis of phospholipids in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging[J]. J Chromatogr A, 2021, 1651:462302.
doi: 10.1016/j.chroma.2021.462302 URL |
[4] |
Yang JH, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution[J]. Anal Chem, 2011, 83(14):5728-5734.
doi: 10.1021/ac200998a pmid: 21639088 |
[5] |
Shikano H, Miyama Y, Ikeda R, et al. Localization analysis of multiple vitamins in dried persimmon(Diospyros kaki)using matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. J Oleo Sci, 2020, 69(8):959-964.
doi: 10.5650/jos.ess20143 pmid: 32641617 |
[6] |
Jaskolla TW, Lehmann WD, Karas M. 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix[J]. Proc Natl Acad Sci USA, 2008, 105(34):12200-12205.
doi: 10.1073/pnas.0803056105 URL |
[7] |
Liu HH, Zhou YM, Wang JY, et al. N-phenyl-2-naphthylamine as a novel MALDI matrix for analysis and in situ imaging of small molecules[J]. Anal Chem, 2018, 90(1):729-736.
doi: 10.1021/acs.analchem.7b02710 pmid: 29172460 |
[8] |
Barré FPY, Claes BSR, Dewez F, et al. Specific lipid and metabolic profiles of R-CHOP-resistant diffuse large B-cell lymphoma elucidated by matrix-assisted laser desorption ionization mass spectrometry imaging and in vivo imaging[J]. Anal Chem, 2018, 90(24):14198-14206.
doi: 10.1021/acs.analchem.8b02910 pmid: 30422637 |
[9] |
Li W, Ren LW, Zheng XJ, et al. 3-O-Acetyl-11-keto-β-boswellic acid ameliorated aberrant metabolic landscape and inhibited autophagy in glioblastoma[J]. Acta Pharm Sin B, 2020, 10(2):301-312.
doi: 10.1016/j.apsb.2019.12.012 URL |
[10] |
Li B, Sun RY, Gordon A, et al. 3-aminophthalhydrazide(luminol)as a matrix for dual-polarity MALDI MS imaging[J]. Anal Chem, 2019, 91(13):8221-8228.
doi: 10.1021/acs.analchem.9b00803 URL |
[11] |
Li N, Wang P, Liu XL, et al. Developing IR-780 as a novel matrix for enhanced MALDI MS imaging of endogenous high-molecular-weight lipids in brain tissues[J]. Anal Chem, 2019, 91(24):15873-15882.
doi: 10.1021/acs.analchem.9b04315 pmid: 31718156 |
[12] |
Ibrahim H, Jurcic K, Wang JSH, et al. 1, 6-diphenyl-1, 3, 5-hexatriene(DPH)as a novel matrix for MALDI MS imaging of fatty acids, phospholipids, and sulfatides in brain tissues[J]. Anal Chem, 2017, 89(23):12828-12836.
doi: 10.1021/acs.analchem.7b03284 pmid: 29095596 |
[13] |
Sun CL, Liu W, Ma SS, et al. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge[J]. J Chromatogr A, 2020, 1614:460704.
doi: 10.1016/j.chroma.2019.460704 URL |
[14] |
Sun CL, Liu W, Mu Y, et al. 1, 1'-binaphthyl-2, 2'-diamine as a novel MALDI matrix to enhance the in situ imaging of metabolic heterogeneity in lung cancer[J]. Talanta, 2020, 209:120557.
doi: 10.1016/j.talanta.2019.120557 URL |
[15] | Liu YQ, Chen LL, Qin L, et al. Enhanced in situ detection and imaging of lipids in biological tissues by using 2, 3-dicyanohydroquinone as a novel matrix for positive-ion MALDI-MS imaging[J]. Chem Commun(Camb), 2019, 55(83):12559-12562. |
[16] |
Rzagalinski I, Kovačević B, Hainz N, et al. Toward higher sensitivity in quantitative MALDI imaging mass spectrometry of CNS drugs using a nonpolar matrix[J]. Anal Chem, 2018, 90(21):12592-12600.
doi: 10.1021/acs.analchem.8b02740 pmid: 30260620 |
[17] |
He HX, Qin L, Zhang YW, et al. 3, 4-dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI[J]. Anal Chem, 2019, 91(4):2634-2643.
doi: 10.1021/acs.analchem.8b03522 URL |
[18] |
Enomoto H, Takahashi S, Takeda S, et al. Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging[J]. Molecules, 2019, 25(1):103.
doi: 10.3390/molecules25010103 URL |
[19] |
Kaya I, Jennische E, Lange S, et al. Multimodal chemical imaging of a single brain tissue section using ToF-SIMS, MALDI-ToF and immuno/histochemical staining[J]. Analyst, 2021, 146(4):1169-1177.
doi: 10.1039/d0an02172e pmid: 33393562 |
[20] |
Yerra NV, Dyaga B, Dadinaboyina SB, et al. 2-cyano-3-(2-thienyl)acrylic acid as a new MALDI matrix for the analysis of a broad spectrum of analytes[J]. J Am Soc Mass Spectrom, 2021, 32(1):387-393.
doi: 10.1021/jasms.0c00398 URL |
[21] |
Liu HQ, Han MM, Li JM, et al. A caffeic acid matrix improves in situ detection and imaging of proteins with high molecular weight close to 200, 000 Da in tissues by matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Anal Chem, 2021, 93(35):11920-11928.
doi: 10.1021/acs.analchem.0c05480 URL |
[22] |
McLaughlin N, Bielinski TM, Tressler CM, et al. Pneumatically sprayed gold nanoparticles for mass spectrometry imaging of neurotransmitters[J]. J Am Soc Mass Spectrom, 2020, 31(12):2452-2461.
doi: 10.1021/jasms.0c00156 URL |
[23] | Qin R, Li P, Du MY, et al. Spatiotemporal visualization of insecticides and fungicides within fruits and vegetables using gold nanoparticle-immersed paper imprinting mass spectrometry imaging[J]. Nanomaterials(Basel), 2021, 11(5):1327. |
[24] |
Guan M, Zhang Z, Li SL, et al. Silver nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in brain[J]. Talanta, 2018, 179:624-631.
doi: S0039-9140(17)31197-9 pmid: 29310285 |
[25] |
Wang T, Lee HK, Yue GGL, et al. A novel binary matrix consisting of graphene oxide and caffeic acid for the analysis of scutellarin and its metabolites in mouse kidney by MALDI imaging[J]. Analyst, 2021, 146(1):289-295.
doi: 10.1039/d0an01539c pmid: 33140762 |
[26] |
Chen CC, Laviolette SR, Whitehead SN, et al. Imaging of neurotransmitters and small molecules in brain tissues using laser desorption/ionization mass spectrometry assisted with zinc oxide nanoparticles[J]. J Am Soc Mass Spectrom, 2021, 32(4):1065-1079.
doi: 10.1021/jasms.1c00021 URL |
[27] |
Dutkiewicz EP, Su CH, Lee HJ, et al. Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry[J]. Plant J, 2021, 105(4):1123-1133.
doi: 10.1111/tpj.15092 URL |
[28] |
Fincher JA, Korte AR, Yadavilli S, et al. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage[J]. Analyst, 2020, 145(21):6910-6918.
doi: 10.1039/D0AN00836B URL |
[29] |
Samarah LZ, Tran TH, Stacey G, et al. Mass spectrometry imaging of bio-oligomer polydispersity in plant tissues by laser desorption ionization from silicon nanopost arrays[J]. Angew Chem Int Ed Engl, 2021, 60(16):9071-9077.
doi: 10.1002/anie.202015251 URL |
[30] |
Fincher JA, Jones DR, Korte AR, et al. Mass spectrometry imaging of lipids in human skin disease model hidradenitis suppurativa by laser desorption ionization from silicon nanopost arrays[J]. Sci Rep, 2019, 9(1):17508.
doi: 10.1038/s41598-019-53938-0 pmid: 31767918 |
[31] |
Fincher JA, Korte AR, Dyer JE, et al. Mass spectrometry imaging of triglycerides in biological tissues by laser desorption ionization from silicon nanopost arrays[J]. J Mass Spectrom, 2020, 55(4):e4443.
doi: 10.1002/jms.4443 |
[32] |
Xu Q, Tian R, Lu C. Mass spectrometry imaging of low-molecular-weight phenols liberated from plastics[J]. Anal Chem, 2021, 93(40):13703-13710.
doi: 10.1021/acs.analchem.1c03397 URL |
[33] |
Calvano CD, Monopoli A, Cataldi TRI, et al. MALDI matrices for low molecular weight compounds:an endless story?[J]. Anal Bioanal Chem, 2018, 410(17):4015-4038.
doi: 10.1007/s00216-018-1014-x URL |
[34] |
Baker TC, Han J, Borchers CH. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Curr Opin Biotechnol, 2017, 43:62-69.
doi: 10.1016/j.copbio.2016.09.003 URL |
[35] |
Zhou QQ, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI[J]. Anal Bioanal Chem, 2021, 413(10):2599-2617.
doi: 10.1007/s00216-020-03023-7 pmid: 33215311 |
[36] |
Misiorek M, Sekuła J, Ruman T. Mass spectrometry imaging of low molecular weight compounds in garlic(Allium sativum L.)with gold nanoparticle enhanced target[J]. Phytochem Anal, 2017, 28(6):479-486.
doi: 10.1002/pca.2696 URL |
[37] |
Zhu ZP, Shen JJ, Xu YF, et al. The improved performance of MALDI-TOF MS on the analysis of herbal saponins by using DHB-GO composite matrix[J]. J Mass Spectrom, 2019, 54(8):684-692.
doi: 10.1002/jms.4385 pmid: 31271243 |
[38] | 马雯, 白玉, 刘虎威. 新型表面辅助激光解吸附/离子化质谱基质及其在生物检测中的应用[J]. 分析测试学报, 2020, 39(1):1-9. |
Ma W, Bai Y, Liu HW. Novel matrixes for surface-assisted laser desorption/ionization mass spectrometry and their applications in biological detection[J]. J Instrum Anal, 2020, 39(1):1-9. | |
[39] |
Lin ZA, Wu J, Dong YQ, et al. Nitrogen and sulfur co-doped carbon-dot-assisted laser desorption/ionization time-of-flight mass spectrometry imaging for profiling bisphenol S distribution in mouse tissues[J]. Anal Chem, 2018, 90(18):10872-10880.
doi: 10.1021/acs.analchem.8b02362 pmid: 30139256 |
[40] |
Fincher JA, Dyer JE, Korte AR, et al. Matrix-free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays[J]. J Comp Neurol, 2019, 527(13):2101-2121.
doi: 10.1002/cne.24566 pmid: 30358893 |
[41] |
Agüi-Gonzalez P, Jähne S, Phan NTN. SIMS imaging in neurobiology and cell biology[J]. J Anal At Spectrom, 2019, 34(7):1355-1368.
doi: 10.1039/C9JA00118B URL |
[42] |
蔡乐斯, 夏梦婵, 李展平, 等. 二次离子质谱生物成像[J]. 化学进展, 2021(1):97-110.
doi: 10.7536/PC200458 |
Cai I, Xia MC, Li ZP, et al. Bioimaging by secondary ion mass spectrometry[J]. Prog Chem, 2021(1):97-110.
doi: 10.7536/PC200458 |
|
[43] |
Passarelli MK, Pirkl A, Moellers R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nat Methods, 2017, 14(12):1175-1183.
doi: 10.1038/nmeth.4504 pmid: 29131162 |
[44] |
Ogrinc Poto\u010dnik N, Fisher GL, Prop A, et al. Sequencing and identification of endogenous neuropeptides with matrix-enhanced secondary ion mass spectrometry tandem mass spectrometry[J]. Anal Chem, 2017, 89(16):8223-8227.
doi: 10.1021/acs.analchem.7b02573 pmid: 28753276 |
[45] |
Takáts Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J]. Science, 2004, 306(5695):471-473.
doi: 10.1126/science.1104404 pmid: 15486296 |
[46] |
Javanshad R, Venter AR. Ambient ionization mass spectrometry:real-time, proximal sample processing and ionization[J]. Anal Methods, 2017, 9(34):4896-4907.
doi: 10.1039/C7AY00948H URL |
[47] |
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies[J]. Mass Spectrom Rev, 2021, doi:10.1002/mas.21736.
doi: 10.1002/mas.21736 URL |
[48] |
Vijayalakshmi K, Shankar V, Bain RM, et al. Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging[J]. Int J Cancer, 2020, 147(1):256-265.
doi: 10.1002/ijc.32843 pmid: 31863456 |
[49] |
Yang XH, Song XW, Zhang XX, et al. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma[J]. EBioMedicine, 2021, 70:103529.
doi: 10.1016/j.ebiom.2021.103529 URL |
[50] | Rivera ES, Djambazova KV, Neumann EK, et al. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues:a brief review and perspective[J]. J Mass Spectrom, 2020, 55(12):e4614. |
[51] |
Levy AJ, Oranzi NR, Ahmadireskety A, et al. Recent progress in metabolomics using ion mobility-mass spectrometry[J]. Trac Trends Anal Chem, 2019, 116:274-281.
doi: 10.1016/j.trac.2019.05.001 URL |
[52] |
Fu TT, Oetjen J, Chapelle M, et al. In situ isobaric lipid mapping by MALDI-ion mobility separation-mass spectrometry imaging[J]. J Mass Spectrom, 2020, 55(9):e4531.
doi: 10.1002/jms.4531 URL |
[53] |
Towers MW, Karancsi T, Jones EA, et al. Optimised desorption electrospray ionisation mass spectrometry imaging(DESI-MSI)for the analysis of proteins/peptides directly from tissue sections on a travelling wave ion mobility Q-ToF[J]. J Am Soc Mass Spectrom, 2018, 29(12):2456-2466.
doi: 10.1007/s13361-018-2049-0 URL |
[54] | Stopka SA, Vertes A. Metabolomic profiling of adherent mammalian cells in situ by LAESI-MS with ion mobility separation[M]// Paglia G, Astarita G. Methods in Molecular Biology. New York, NY: Springer US, 2019:235-244. |
[55] |
Schramm T, Hester Z, Klinkert I, et al. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data[J]. J Proteomics, 2012, 75(16):5106-5110.
doi: 10.1016/j.jprot.2012.07.026 URL |
[56] |
Robichaud G, Garrard KP, Barry JA, et al. MSiReader:an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform[J]. J Am Soc Mass Spectrom, 2013, 24(5):718-721.
doi: 10.1007/s13361-013-0607-z URL |
[57] |
Parry RM, Galhena AS, Gamage CM, et al. omniSpect:an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images[J]. J Am Soc Mass Spectrom, 2013, 24(4):646-649.
doi: 10.1007/s13361-012-0572-y URL |
[58] |
Bodzon-Kulakowska A, Marszalek-Grabska M, Antolak A, et al. Comparison of two freely available software packages for mass spectrometry imaging data analysis using brains from morphine addicted rats[J]. Eur J Mass Spectrom, 2016, 22(5):229-233.
pmid: 27882888 |
[59] |
He JM, Huang LJ, Tian RT, et al. MassImager:a software for interactive and in-depth analysis of mass spectrometry imaging data[J]. Anal Chim Acta, 2018, 1015:50-57.
doi: 10.1016/j.aca.2018.02.030 URL |
[60] |
Cordes J, Enzlein T, Marsching C, et al. M2aia-Interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data[J]. GigaScience, 2021, 10(7):giab049.
doi: 10.1093/gigascience/giab049 URL |
[61] |
Veselkov K, Sleeman J, Claude E, et al. BASIS:High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology[J]. Sci Rep, 2018, 8(1):4053.
doi: 10.1038/s41598-018-22499-z pmid: 29511258 |
[62] |
Zhang WQ, Claesen M, Moerman T, et al. Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning[J]. Anal Bioanal Chem, 2021, 413(10):2803-2819.
doi: 10.1007/s00216-021-03179-w pmid: 33646352 |
[63] |
Tian H, Sparvero LJ, Blenkinsopp P, et al. Secondary-ion mass spectrometry images cardiolipins and phosphatidylethanolamines at the subcellular level[J]. Angew Chem Int Ed Engl, 2019, 58(10):3156-3161.
doi: 10.1002/anie.201814256 URL |
[64] |
Niehaus M, Soltwisch J, Belov ME, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nat Methods, 2019, 16(9):925-931.
doi: 10.1038/s41592-019-0536-2 pmid: 31451764 |
[65] |
Sparvero LJ, Tian H, Amoscato AA, et al. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry(GCIB-SIMS)[J]. Angew Chem Int Ed Engl, 2021, 60(21):11784-11788.
doi: 10.1002/anie.202102001 URL |
[66] |
Zhao C, Cai ZW. Three-dimensional quantitative mass spectrometry imaging in complex system:from subcellular to whole organism[J]. Mass Spectrom Rev, 2022, 41(3):469-487.
doi: 10.1002/mas.21674 URL |
[67] |
Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems[J]. Annu Rev Phys Chem, 2021, 72:307-329.
doi: 10.1146/annurev-physchem-061020-053416 pmid: 33441032 |
[68] |
Huang L, Wan JJ, Wei X, et al. Plasmonic silver nanoshells for drug and metabolite detection[J]. Nat Commun, 2017, 8(1):220.
doi: 10.1038/s41467-017-00220-4 pmid: 28790311 |
[69] |
Gan JR, Wei X, Li YX, et al. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry[J]. Nanomedicine, 2015, 11(7):1715-1723.
doi: 10.2217/nnm-2016-0109 URL |
[1] | YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges [J]. Biotechnology Bulletin, 2021, 37(1): 32-51. |
[2] | JIANG Wen-jing, ZHANG Jun-yi, DU Yang, SUN Li-wei. Application Analysis of Microcystis aeruginosa Identification Based on Ribosomal Proteins [J]. Biotechnology Bulletin, 2017, 33(10): 117-124. |
[3] | Liu Lin, Jia Peipei, Lu Weidong, Guo Qilin, Guo Lizhong. Differential Protein Expression Analysis of Hypsizygus marmoreus Under High Temperature Stress [J]. Biotechnology Bulletin, 2014, 0(5): 142-147. |
[4] | Wang Jian, Liu Lili, Yu Kaimin, Li Guochao, Wu Wei, Yan Yanchun. Toxicity of Beta-cypermethrin for Zebrafish Embryos [J]. Biotechnology Bulletin, 2014, 0(10): 223-229. |
[5] | Xu Jin, Zhang Xuerong, Hu Rentong, Luo Xiaoling, Chen Ying, Lin Xing, Liao Ming, Fu Rao, Fu Daoying. Analysis for Differentially Expressed Proteins of HSC-T6 Cell Affected by Nerve Growth Factor [J]. Biotechnology Bulletin, 2013, 0(5): 130-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||