Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 233-243.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0100
Previous Articles Next Articles
ZHANG Qian(), XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui()
Received:
2022-01-21
Online:
2022-12-26
Published:
2022-12-29
Contact:
LI Hui
E-mail:zhangqian199072@163.com;lihui4007@163.com
ZHANG Qian, XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui. Isolation of Maize Straw-decomposing Bacteria in Yellow-cinnamon Soil and Its Ability of Promoting Decomposition[J]. Biotechnology Bulletin, 2022, 38(12): 233-243.
菌株编号 Strain No. | 水解圈直径(D) Hydrolytic circle diameter/mm | 菌落直径(d) Colony diameter/mm | 水解圈直径/菌落直径D/d | 滤纸条崩解程度 Degradation degree of filter strips | 秸秆崩解程度 Degradation degree of straw | 分离方案 Isolation scheme |
---|---|---|---|---|---|---|
XJ1 | 6.16±0.34 | 6.14±0.34 | 1.00±0.00 | + | +++ | 方案1 |
XJ2 | 9.75±4.56 | 4.18±0.09 | 2.29±1.02 | ++ | +++ | 方案1 |
XJ3 | 37.71±0.67 | 7.78±0.73 | 4.93±0.42 | ++ | + | 方案1 |
XJ4 | 38.58±0.65 | 8.40±0.91 | 4.66±0.43 | + | + | 方案1 |
XJ5 | 5.83±0.03 | 4.41±0.30 | 1.34±0.10 | ++ | +++ | 方案1 |
XJ6 | 17.63±0.42 | 5.06±0.13 | 3.49±0.16 | + | + | 方案1 |
XJ7 | 17.83±0.44 | 4.41±0.27 | 4.09±0.34 | + | + | 方案1 |
XJ8 | 35.05±0.09 | 7.74±0.56 | 4.57±0.30 | + | +++ | 方案1 |
XJ9 | 34.37±1.01 | 3.68±0.41 | 9.53±0.85 | +++ | ++ | 方案1 |
XJ10 | 5.25±0.21 | 4.62±0.07 | 1.14±0.03 | +++ | + | 方案1 |
XJ11 | 5.68±0.33 | 3.77±0.12 | 1.51±0.08 | ++ | + | 方案1 |
XJ12 | 32.45±0.68 | 3.84±0.18 | 8.50±0.57 | +++ | ++ | 方案1 |
XJ13 | 35.28±0.57 | 3.69±0.38 | 9.80±1.13 | ++ | +++ | 方案1 |
XJ14 | 18.36±0.76 | 4.88±0.41 | 3.81±0.29 | +++ | +++ | 方案1 |
XJ15 | 18.20±0.61 | 4.78±0.13 | 3.81±0.15 | ++ | +++ | 方案1 |
XJ16 | 18.07±0.37 | 4.38±0.34 | 4.17±0.26 | +++ | +++ | 方案1 |
XJ17 | 30.87±0.59 | 8.48±0.52 | 3.66±0.21 | + | ++ | 方案1 |
XJ18 | 33.75±0.45 | 7.14±0.29 | 4.75±0.22 | ++ | + | 方案1 |
XJ19 | 14.30±7.36 | 5.52±0.30 | 2.75±1.56 | + | ++ | 方案1 |
XJ20 | 17.45±0.26 | 6.33±0.06 | 2.76±0.07 | + | ++ | 方案1 |
XJ21 | 18.24±0.27 | 4.16±0.26 | 4.42±0.28 | + | +++ | 方案1 |
XJ22 | 7.79±0.20 | 5.35±0.02 | 1.46±0.03 | + | +++ | 方案3 |
XJ23 | 17.27±1.00 | 5.79±0.22 | 2.98±0.07 | ++ | ++ | 方案3 |
XJ24 | 15.57±0.33 | 4.55±0.24 | 3.45±0.25 | + | + | 方案3 |
XJ25 | 15.24±0.57 | 5.51±0.12 | 2.76±0.09 | + | ++ | 方案3 |
XJ26 | 5.39±0.04 | 4.69±0.03 | 1.15±0.01 | + | ++ | 方案3 |
XJ27 | 36.81±0.61 | 7.42±0.19 | 4.97±0.21 | ++ | +++ | 方案3 |
XJ28 | 4.32±0.24 | 2.77±0.08 | 1.55±0.04 | + | +++ | 方案3 |
XJ29 | 4.41±0.19 | 3.32±0.13 | 1.33±0.01 | ++ | ++ | 方案3 |
XJ30 | 4.02±0.15 | 2.79±0.22 | 1.46±0.14 | ++ | ++ | 方案3 |
XJ31 | 34.00±0.09 | 5.15±0.66 | 6.81±0.79 | +++ | + | 方案3 |
XJ32 | 19.69±0.43 | 5.55±0.08 | 3.55±0.12 | ++ | + | 方案3 |
XJ33 | 19.70±0.48 | 5.58±0.06 | 3.53±0.06 | + | + | 方案3 |
XJ34 | 35.88±1.14 | 6.76±1.51 | 5.97±1.48 | +++ | ++ | 方案3 |
XJ35 | 4.61±0.22 | 2.16±0.09 | 2.14±0.14 | +++ | ++ | 方案3 |
XJ36 | 19.62±0.23 | 5.47±0.05 | 3.59±0.07 | +++ | ++ | 方案1 |
XJ37 | 33.96±0.32 | 3.91±0.29 | 8.78±0.65 | +++ | ++ | 方案3 |
XJ38 | 7.98±0.62 | 6.13±0.32 | 1.30±0.06 | +++ | ++ | 方案3 |
XJ39 | 13.37±0.58 | 3.87±0.16 | 3.46±0.07 | +++ | ++ | 方案3 |
XJ40 | 37.27±0.20 | 10.11±0.23 | 3.69±0.07 | ++ | ++ | 方案3 |
XJ41 | 5.53±0.28 | 3.86±0.20 | 1.43±0.03 | + | ++ | 方案3 |
XJ42 | 37.67±0.58 | 7.16±0.71 | 5.37±0.54 | + | + | 方案3 |
XJ43 | 19.66±0.20 | 5.30±0.24 | 3.73±0.19 | + | +++ | 方案3 |
XJ44 | 5.28±0.21 | 7.04±0.69 | 0.73±0.09 | + | ++ | 方案2 |
XJ45 | 4.07±0.29 | 3.85±0.21 | 1.06±0.02 | ++ | ++ | 方案2 |
XJ46 | 7.97±0.66 | 5.74±0.32 | 1.38±0.04 | + | ++ | 方案2 |
XJ47 | 6.73±0.58 | 5.10±0.33 | 1.33±0.12 | +++ | ++ | 方案2 |
XJ48 | 5.85±0.14 | 5.49±0.13 | 1.07±0.01 | + | + | 方案2 |
XJ49 | 20.25±0.95 | 5.23±0.22 | 3.87±0.04 | +++ | +++ | 方案2 |
XJ50 | 6.07±0.27 | 6.04±0.27 | 1.01±0.00 | + | ++ | 方案2 |
XJ51 | 6.95±0.30 | 5.38±0.16 | 1.29±0.02 | ++ | + | 方案2 |
XJ52 | 18.24±0.70 | 6.09±0.14 | 2.99±0.05 | + | ++ | 方案2 |
XJ53 | 33.64±0.20 | 9.22±0.31 | 3.66±0.14 | + | + | 方案2 |
XJ54 | 21.58±0.47 | 5.84±0.15 | 3.70±0.18 | ++ | +++ | 方案2 |
XJ55 | 4.28±0.27 | 3.32±0.29 | 1.30±0.04 | ++ | +++ | 方案2 |
XJ56 | 5.28±0.97 | 3.58±0.16 | 1.51±0.35 | + | ++ | 方案2 |
XJ57 | 7.05±0.21 | 5.33±0.43 | 1.34±0.09 | + | +++ | 方案2 |
XJ58 | 4.56±0.07 | 4.19±0.09 | 1.09±0.02 | + | + | 方案2 |
Table 1 Hydrolytic circle diameter of strains on Congo red medium,and degradation degrees of filter strips and maize straw with different strains inoculated
菌株编号 Strain No. | 水解圈直径(D) Hydrolytic circle diameter/mm | 菌落直径(d) Colony diameter/mm | 水解圈直径/菌落直径D/d | 滤纸条崩解程度 Degradation degree of filter strips | 秸秆崩解程度 Degradation degree of straw | 分离方案 Isolation scheme |
---|---|---|---|---|---|---|
XJ1 | 6.16±0.34 | 6.14±0.34 | 1.00±0.00 | + | +++ | 方案1 |
XJ2 | 9.75±4.56 | 4.18±0.09 | 2.29±1.02 | ++ | +++ | 方案1 |
XJ3 | 37.71±0.67 | 7.78±0.73 | 4.93±0.42 | ++ | + | 方案1 |
XJ4 | 38.58±0.65 | 8.40±0.91 | 4.66±0.43 | + | + | 方案1 |
XJ5 | 5.83±0.03 | 4.41±0.30 | 1.34±0.10 | ++ | +++ | 方案1 |
XJ6 | 17.63±0.42 | 5.06±0.13 | 3.49±0.16 | + | + | 方案1 |
XJ7 | 17.83±0.44 | 4.41±0.27 | 4.09±0.34 | + | + | 方案1 |
XJ8 | 35.05±0.09 | 7.74±0.56 | 4.57±0.30 | + | +++ | 方案1 |
XJ9 | 34.37±1.01 | 3.68±0.41 | 9.53±0.85 | +++ | ++ | 方案1 |
XJ10 | 5.25±0.21 | 4.62±0.07 | 1.14±0.03 | +++ | + | 方案1 |
XJ11 | 5.68±0.33 | 3.77±0.12 | 1.51±0.08 | ++ | + | 方案1 |
XJ12 | 32.45±0.68 | 3.84±0.18 | 8.50±0.57 | +++ | ++ | 方案1 |
XJ13 | 35.28±0.57 | 3.69±0.38 | 9.80±1.13 | ++ | +++ | 方案1 |
XJ14 | 18.36±0.76 | 4.88±0.41 | 3.81±0.29 | +++ | +++ | 方案1 |
XJ15 | 18.20±0.61 | 4.78±0.13 | 3.81±0.15 | ++ | +++ | 方案1 |
XJ16 | 18.07±0.37 | 4.38±0.34 | 4.17±0.26 | +++ | +++ | 方案1 |
XJ17 | 30.87±0.59 | 8.48±0.52 | 3.66±0.21 | + | ++ | 方案1 |
XJ18 | 33.75±0.45 | 7.14±0.29 | 4.75±0.22 | ++ | + | 方案1 |
XJ19 | 14.30±7.36 | 5.52±0.30 | 2.75±1.56 | + | ++ | 方案1 |
XJ20 | 17.45±0.26 | 6.33±0.06 | 2.76±0.07 | + | ++ | 方案1 |
XJ21 | 18.24±0.27 | 4.16±0.26 | 4.42±0.28 | + | +++ | 方案1 |
XJ22 | 7.79±0.20 | 5.35±0.02 | 1.46±0.03 | + | +++ | 方案3 |
XJ23 | 17.27±1.00 | 5.79±0.22 | 2.98±0.07 | ++ | ++ | 方案3 |
XJ24 | 15.57±0.33 | 4.55±0.24 | 3.45±0.25 | + | + | 方案3 |
XJ25 | 15.24±0.57 | 5.51±0.12 | 2.76±0.09 | + | ++ | 方案3 |
XJ26 | 5.39±0.04 | 4.69±0.03 | 1.15±0.01 | + | ++ | 方案3 |
XJ27 | 36.81±0.61 | 7.42±0.19 | 4.97±0.21 | ++ | +++ | 方案3 |
XJ28 | 4.32±0.24 | 2.77±0.08 | 1.55±0.04 | + | +++ | 方案3 |
XJ29 | 4.41±0.19 | 3.32±0.13 | 1.33±0.01 | ++ | ++ | 方案3 |
XJ30 | 4.02±0.15 | 2.79±0.22 | 1.46±0.14 | ++ | ++ | 方案3 |
XJ31 | 34.00±0.09 | 5.15±0.66 | 6.81±0.79 | +++ | + | 方案3 |
XJ32 | 19.69±0.43 | 5.55±0.08 | 3.55±0.12 | ++ | + | 方案3 |
XJ33 | 19.70±0.48 | 5.58±0.06 | 3.53±0.06 | + | + | 方案3 |
XJ34 | 35.88±1.14 | 6.76±1.51 | 5.97±1.48 | +++ | ++ | 方案3 |
XJ35 | 4.61±0.22 | 2.16±0.09 | 2.14±0.14 | +++ | ++ | 方案3 |
XJ36 | 19.62±0.23 | 5.47±0.05 | 3.59±0.07 | +++ | ++ | 方案1 |
XJ37 | 33.96±0.32 | 3.91±0.29 | 8.78±0.65 | +++ | ++ | 方案3 |
XJ38 | 7.98±0.62 | 6.13±0.32 | 1.30±0.06 | +++ | ++ | 方案3 |
XJ39 | 13.37±0.58 | 3.87±0.16 | 3.46±0.07 | +++ | ++ | 方案3 |
XJ40 | 37.27±0.20 | 10.11±0.23 | 3.69±0.07 | ++ | ++ | 方案3 |
XJ41 | 5.53±0.28 | 3.86±0.20 | 1.43±0.03 | + | ++ | 方案3 |
XJ42 | 37.67±0.58 | 7.16±0.71 | 5.37±0.54 | + | + | 方案3 |
XJ43 | 19.66±0.20 | 5.30±0.24 | 3.73±0.19 | + | +++ | 方案3 |
XJ44 | 5.28±0.21 | 7.04±0.69 | 0.73±0.09 | + | ++ | 方案2 |
XJ45 | 4.07±0.29 | 3.85±0.21 | 1.06±0.02 | ++ | ++ | 方案2 |
XJ46 | 7.97±0.66 | 5.74±0.32 | 1.38±0.04 | + | ++ | 方案2 |
XJ47 | 6.73±0.58 | 5.10±0.33 | 1.33±0.12 | +++ | ++ | 方案2 |
XJ48 | 5.85±0.14 | 5.49±0.13 | 1.07±0.01 | + | + | 方案2 |
XJ49 | 20.25±0.95 | 5.23±0.22 | 3.87±0.04 | +++ | +++ | 方案2 |
XJ50 | 6.07±0.27 | 6.04±0.27 | 1.01±0.00 | + | ++ | 方案2 |
XJ51 | 6.95±0.30 | 5.38±0.16 | 1.29±0.02 | ++ | + | 方案2 |
XJ52 | 18.24±0.70 | 6.09±0.14 | 2.99±0.05 | + | ++ | 方案2 |
XJ53 | 33.64±0.20 | 9.22±0.31 | 3.66±0.14 | + | + | 方案2 |
XJ54 | 21.58±0.47 | 5.84±0.15 | 3.70±0.18 | ++ | +++ | 方案2 |
XJ55 | 4.28±0.27 | 3.32±0.29 | 1.30±0.04 | ++ | +++ | 方案2 |
XJ56 | 5.28±0.97 | 3.58±0.16 | 1.51±0.35 | + | ++ | 方案2 |
XJ57 | 7.05±0.21 | 5.33±0.43 | 1.34±0.09 | + | +++ | 方案2 |
XJ58 | 4.56±0.07 | 4.19±0.09 | 1.09±0.02 | + | + | 方案2 |
测试项目 Test item | 菌株编号 Strain No. | ||
---|---|---|---|
XJ3 | XJ8 | ||
形态学 Morphology | 杆状,菌落白色,表面光滑 | 杆状,菌落白色,表面粗糙 | |
过氧化氢酶反应 Catalase test | 阳性 | 阳性 | |
M.R. 反应 Methyl red reaction | 阳性 | 阳性 | |
乙酰甲基甲醇反应 Acetyl methyl carbinol | 阴性 | 阴性 | |
淀粉水解 Starch hydrolysis | 阳性 | 阳性 | |
明胶水解 Gelatin hydrolyzation | 阳性 | 阳性 | |
硝酸盐还原 Nitrate reduction | 阳性 | 阳性 | |
柠檬酸盐利用 Utilization of citrate | 阳性 | 阳性 | |
好氧性试验 Aerobic test | 好氧 | 兼性厌氧 | |
革兰氏染色 Gram stain | 阴性 | 阴性 |
Table 2 Morphology and physiological-biochemical chara-cteristics of maize straw-decomposing strains
测试项目 Test item | 菌株编号 Strain No. | ||
---|---|---|---|
XJ3 | XJ8 | ||
形态学 Morphology | 杆状,菌落白色,表面光滑 | 杆状,菌落白色,表面粗糙 | |
过氧化氢酶反应 Catalase test | 阳性 | 阳性 | |
M.R. 反应 Methyl red reaction | 阳性 | 阳性 | |
乙酰甲基甲醇反应 Acetyl methyl carbinol | 阴性 | 阴性 | |
淀粉水解 Starch hydrolysis | 阳性 | 阳性 | |
明胶水解 Gelatin hydrolyzation | 阳性 | 阳性 | |
硝酸盐还原 Nitrate reduction | 阳性 | 阳性 | |
柠檬酸盐利用 Utilization of citrate | 阳性 | 阳性 | |
好氧性试验 Aerobic test | 好氧 | 兼性厌氧 | |
革兰氏染色 Gram stain | 阴性 | 阴性 |
[1] | 牛新胜, 巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报, 2017, 23(6):1462-1479. |
Niu XS, Ju XT. Organic fertilizer resources and utilization in China[J]. J Plant Nutr Fertil, 2017, 23(6):1462-1479. | |
[2] | 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5):526-535. |
Pan JL, Dai WN, Shang ZH, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chin J Eco Agric, 2013, 21(5):526-535.
doi: 10.3724/SP.J.1011.2013.00526 URL |
|
[3] | 王婧, 张莉, 逄焕成, 等. 秸秆颗粒化还田加速腐解速率提高培肥效果[J]. 农业工程学报, 2017, 33(6):177-183. |
Wang J, Zhang L, Pang HC, et al. Returning granulated straw for accelerating decomposition rate and improving soil fertility[J]. Trans Chin Soc Agric Eng, 2017, 33(6):177-183. | |
[4] | 李红亚, 李术娜, 王树香, 等. 产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J]. 中国农业科学, 2014, 47(2):324-333. |
Li HY, Li SN, Wang SX, et al. Screening, identification of lignin-degradating Bacillus MN-8 and its characteristics in degradation of maize straw lignin[J]. Sci Agric Sin, 2014, 47(2):324-333. | |
[5] |
Liu YT, Zhao SQ, Zhu Q, et al. Image grey value analysis for estimating the effect of microorganism inoculants on straws decomposition[J]. Comput Electron Agric, 2016, 128:120-126.
doi: 10.1016/j.compag.2016.08.023 URL |
[6] | 王洪媛, 范丙全. 三株高效秸秆纤维素降解真菌的筛选及其降解效果[J]. 微生物学报, 2010, 50(7):870-875. |
Wang HY, Fan BQ. Screening of three straw-cellulose degrading microorganism[J]. Acta Microbiol Sin, 2010, 50(7):870-875. | |
[7] | 李正风, 朱杰, 唐丽, 等. 烟草秸秆中产纤维素酶细菌筛选、鉴定及酶活测定[J]. 西南农业学报, 2020, 33(3):645-650. |
Li ZF, Zhu J, Tang L, et al. Isolation, identification and cellulase enzyme activity determination of cellulase-producing bacteria from tobacco straw[J]. Southwest China J Agric Sci, 2020, 33(3):645-650. | |
[8] | 胡佳俊, 王磊, 李艳丽, 等. 非光合CO2同化微生物菌群的选育/优化及其群落结构分析[J]. 环境科学, 2009, 30(8):2438-2444. |
Hu JJ, Wang L, Li YL, et al. Breeding, optimization and community structure analysis of non-photosynthetic CO2 assimilation microbial flora[J]. Environ Sci, 2009, 30(8):2438-2444. | |
[9] | 李娜, 韩永武, 金勋, 等. 一株低温秸秆纤维素降解菌的分离、鉴定及降解特性[J]. 玉米科学, 2019, 27(1):159-163. |
Li N, Han YW, Jin X, et al. Isolation, identification and characteristics analysis of a straw-cellulose degradation strain adaptable for low-temperature[J]. J Maize Sci, 2019, 27(1):159-163. | |
[10] | 顾文杰, 徐有权, 徐培智, 等. 酸性土壤中高效半纤维素降解菌的筛选与鉴定[J]. 微生物学报, 2012, 52(10):1251-1259. |
Gu WJ, Xu YQ, Xu PZ, et al. Screening and identification of hemicellulose degrading microorganisms in acid soil[J]. Acta Microbiol Sin, 2012, 52(10):1251-1259. | |
[11] | 青格尔, 高聚林, 王振, 等. 玉米秸秆低温降解复合菌系GF-20的促分解作用及对土壤微生物多样性的影响[J]. 玉米科学, 2016, 24(3):153-161. |
Qing GE, Gao JL, Wang Z, et al. Effects of microbial consortium GF-20 with low temperature efficiency on corn stalk degradation and soil microbial diversity[J]. J Maize Sci, 2016, 24(3):153-161. | |
[12] | 刘灿华, 孙笑梅, 袁天佑, 等. 河南省农田土壤酸化现状分析[J]. 河南农业, 2020(22):17. |
Liu CH, Sun XM, Yuan TY, et al. Analysis of farmland soil acidification in Henan Province[J]. Henan Nongye, 2020(22):17. | |
[13] | 姚丽娟, 余有本, 周天山, 等. 陕南茶园黄褐土的改良研究[J]. 西北农业学报, 2009, 18(5):316-320. |
Yao LJ, Yu YB, Zhou TS, et al. Studies on the improvement of yellow cinnamon soils of tea garden in south Shaanxi[J]. Acta Agric Boreali Occidentalis Sin, 2009, 18(5):316-320. | |
[14] | 吴琴燕, 陈宏州, 杨敬辉, 等. 不同腐解剂对麦秸秆腐解的初步研究[J]. 上海农业学报, 2010, 26(4):83-86. |
Wu QY, Chen HZ, Yang JH, et al. Preliminary study on effects of different decomposers on wheat straw[J]. Acta Agric Shanghai, 2010, 26(4):83-86. | |
[15] | 马超, 周静, 朱远芃, 等. 秸秆还田配伍腐秆剂对小麦生长发育和肥料利用率的影响[J]. 安徽农业大学学报, 2018, 45(3):532-537. |
Ma C, Zhou J, Zhu YP, et al. Effects of returning maize straw into field on the growth and nitrogen use efficiency of winter wheat under promoting decay condition[J]. J Anhui Agric Univ, 2018, 45(3):532-537. | |
[16] |
Yao MY, Liu XF, Yuan YX, et al. Isolation of a fungus with selective delignification and its degradation of corn stalk[J]. Chin J Appplied Environ Biol, 2010, 2009(3):427-431.
doi: 10.3724/SP.J.1145.2009.00427 URL |
[17] | 张冬雪, 文亚雄, 罗志威, 等. 纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析[J]. 江西农业学报, 2020, 32(1):72-76. |
Zhang DX, Wen YX, Luo ZW, et al. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw[J]. Acta Agric Jiangxi, 2020, 32(1):72-76. | |
[18] | 程鹏, 刘姗姗, 王玉, 等. 1株高产纤维素酶菌株的筛选鉴定及对稻秆降解的研究[J]. 华南农业大学学报, 2019, 40(1):84-91. |
Cheng P, Liu SS, Wang Y, et al. Screening and identification of a cellulase-producing strain and its degradation of rice straw[J]. J South China Agric Univ, 2019, 40(1):84-91. | |
[19] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual of common determinative bacteriology[M]. Beijing: Science Press, 2001. | |
[20] | 姚云柯, 周卫, 孙建光, 等. 田间条件下不同促腐菌对水稻秸秆腐解及胞外酶活性的影响[J]. 植物营养与肥料学报, 2020, 26(11):2070-2080. |
Yao YK, Zhou W, Sun JG, et al. Effects of different straw-decomposition inoculants on increasing the activities of extracellular enzymes and decomposition of rice straw buried into soil[J]. J Plant Nutr Fertil, 2020, 26(11):2070-2080. | |
[21] | 韦中, 徐春淼, 郑海平, 等. “挂壁”法筛选常温稻秆腐解菌及其降解能力研究[J]. 农业环境科学学报, 2015, 34(10):2027-2031. |
Wei Z, Xu CM, Zheng HP, et al. Degradation of rice straw by degrading strains isolated by a “hanging-enrichment” method[J]. J Agro Environ Sci, 2015, 34(10):2027-2031. | |
[22] | 程小龙. 外源水杨酸诱导烟草抗青枯病的作用及机理研究[D]. 重庆: 西南大学, 2014. |
Cheng XL. Foreign salicylic acid induced resistance to bacterial wilt of tobacco in control efficiency and mechanism of action[D]. Chongqing: Southwest University, 2014. | |
[23] |
Peterson SB, Dunn AK, Klimowicz AK, et al. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group[J]. Appl Environ Microbiol, 2006, 72(8):5421-5427.
doi: 10.1128/AEM.02928-05 URL |
[24] |
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiol Rev, 2013, 37(5):634-663.
doi: 10.1111/1574-6976.12028 URL |
[25] |
Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes[J]. Mol Plant Microbe Interact, 2012, 25(2):139-150.
doi: 10.1094/MPMI-06-11-0179 URL |
[26] |
Niu DD, Liu HX, Jiang CH, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Mol Plant Microbe Interact, 2011, 24(5):533-542.
doi: 10.1094/MPMI-09-10-0213 URL |
[27] | 徐春淼. 稻秆腐解复合菌系的构建和降解效果研究[D]. 南京: 南京农业大学, 2014. |
Xu CM. Research about the construction and degradation of a high efficient complex microbial system for rice straw degradation[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[28] | 于素素. 低温玉米秸秆降解菌的筛选及其复合菌系产酶条件优化[D]. 沈阳: 沈阳农业大学, 2019. |
Yu SS. Screening of low-temperature corn straw degradation strains and optimization of enzyme production conditions of complex strains[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[29] | 夏强. 纤维素降解混合菌剂的构建及降解效能[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Xia Q. Construction of cellulose-degrading compound microbial inoculum and degradation efficiency[D]. Harbin: Harbin Institute of Technology, 2018. | |
[30] | 蒋明星, 丁晓帆. 纤维素降解细菌的筛选及其酶活测定[J]. 中国农学通报, 2015, 31(36):161-164. |
Jiang MX, Ding XF. Screening of cellulose-decomposing bacteria and enzymatic activity determination[J]. Chin Agric Sci Bull, 2015, 31(36):161-164. | |
[31] |
Singhania RR, Patel AK, Sukumaran RK, et al. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production[J]. Bioresour Technol, 2013, 127:500-507.
doi: 10.1016/j.biortech.2012.09.012 URL |
[32] | 董妙音, 王曙阳, 王雨辰, 等. 丝状真菌在纤维素酶合成过程中碳源代谢调控的研究进展[J]. 中国酿造, 2016, 35(10):1-4. |
Dong MY, Wang SY, Wang YC, et al. Research process of filamentous fungi on carbon source metabolism regulations during cellulase synthesis[J]. China Brew, 2016, 35(10):1-4. | |
[33] | 张鑫, 青格尔, 高聚林, 等. 玉米秸秆低温降解复合菌的筛选及其菌种组成[J]. 农业环境科学学报, 2021, 40(7):1565-1574. |
Zhang X, Qinggeer, Gao JL, et al. Screening and composition of the microbial consortium with corn straw decomposition under low temperature[J]. J Agro Environ Sci, 2021, 40(7):1565-1574. | |
[34] | 王新光, 田磊, 王恩泽, 等. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4):217-229. |
Wang XG, Tian L, Wang EZ, et al. Construction of microbial consortium for efficient degradation of corn straw and evaluation of its degradation effect[J]. Biotechnol Bull, 2022, 38(4):217-229. |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | YANG Dong, TANG Ying. Enzymatic Characterization and Degradation Sites of AFB1 Degradation by the Extracellular Enzyme of Bacillus subtilis Strain WTX1 [J]. Biotechnology Bulletin, 2023, 39(4): 93-102. |
[3] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[4] | FU Qiao, LIN Qi-lan, XUE Qiang, XIONG Hai-rong, WANG Ya-wei. Effects of CBM41 N-terminal Truncation on the Enzymological Properties of the Pullulanase from Bacillus subtilis 168 [J]. Biotechnology Bulletin, 2022, 38(6): 245-251. |
[5] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[6] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[7] | MIAO Hua-biao, CAO Yan, YANG Meng-han, HUANG Zun-xi. The Strategy for Enhancing Foreign Proteins Expression by Signal Peptide in Bacillus subtilis [J]. Biotechnology Bulletin, 2021, 37(6): 259-271. |
[8] | ZHU Hai-yun, MA Yu, KE Yang, LI Bo. Screening and Identification of an Antagonist Against the Pathogen of Kiwifruit Canker and Its Antifungal Activity to the Phytopathogenic Fungus [J]. Biotechnology Bulletin, 2021, 37(6): 66-72. |
[9] | TANG Ying, HUANG Jia, DENG Zhan-rui, YANG Xiao-nan. Product Analysis of Degrading Aflatoxin B1 by a Strain Bacillus subtilis [J]. Biotechnology Bulletin, 2021, 37(12): 82-90. |
[10] | LIN Mei-xuan, ZHOU Xiao-man, GUAN Feng, CUI Wen-jing. Heterologous Expression and Application of Phosphatidylinositol-specific Phospholipase C [J]. Biotechnology Bulletin, 2020, 36(1): 81-87. |
[11] | ZHAO Xiao-xia, NIU Shi-quan, WEN Na, SU Feng-feng. Screening and Identification of Biocontrol Bacillus sp. Against Astragalus Root Rot and Its Pot Experiment [J]. Biotechnology Bulletin, 2019, 35(9): 107-111. |
[12] | QIU Jin, HUANG Huo-qing, YAO Bin, LUO Hui-ying. Improvement of Catalytic Activity of Amylase from Bacillus amyloliquefaciens and Its High Expression in Bacillus subtilis [J]. Biotechnology Bulletin, 2019, 35(9): 134-143. |
[13] | LI Xiao-mei, ZHOU Zong-hui, YIN Xiu-hua, JIANG Hong-rui, LIU Xiao-ling. Identification of Bacillus cereus Strain Producing Fibrinolytic Enzyme from Sipunculus nudus [J]. Biotechnology Bulletin, 2019, 35(7): 70-75. |
[14] | ZHANG Wan-jun, WU Xiao-qin, WANG Ya-hui. Nematicidal Activity of Bacteria against Bursaphelenchus xylophilus and Its Fermentation and Culture Characteristics [J]. Biotechnology Bulletin, 2019, 35(7): 76-82. |
[15] | LING Xie, JI Ming-hua, DUAN Hai-yan, SHI Ji-ping, SUN Jun-song. Construction of An Oxidation Pathway of Xylonic Acid in Bacillus subtilis for Production of Glycolic Acid [J]. Biotechnology Bulletin, 2019, 35(6): 76-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||