Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 215-227.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1082
Previous Articles Next Articles
XU Chong-xin(), ZHONG Jian-feng, GAO Mei-jing, LU Li-na, LIU Xian-jin, SHEN Yan()
Received:
2021-08-24
Online:
2022-05-26
Published:
2022-06-10
Contact:
XU Chong-xin,SHEN Yan
E-mail:hhxyxcx@163.com;529816626@qq.com
XU Chong-xin, ZHONG Jian-feng, GAO Mei-jing, LU Li-na, LIU Xian-jin, SHEN Yan. Research Progress in Plant Endophyte on the Quality Safety and Nutritional Quality Regulation of Edible Agricultural Products[J]. Biotechnology Bulletin, 2022, 38(5): 215-227.
菌种名称及宿主来源 Species name and host origin | 危害因子 Hazard factor | 供试作物Selected crop | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
P. ruqueforti, 来源于牛茄子 | 铅 | 小麦 | 有效阻断植株铅吸收和蓄积,促进植株生长 | [ |
Streptococcus(GZ01), 来源于钻叶紫苑 | 大豆 | 增强植株铅胁迫耐受力,降低铅吸收和蓄积,促进植株生长 | [ | |
Mucor sp.(MHR-7), 来源于银胶菊 | 铬 | 芥菜 | 增强芥菜铬胁迫耐受性,减少植株铬吸收和积累 | [ |
Pantoea sp.(BacI23), 来源于豆科植物 | 汞 | 玉米 | 增强植株汞胁迫耐受性,减少汞吸收和蓄积,促进植株生长 | [ |
Photobacterium spp.(MELD1),来源于芦苇 | 豇豆 | 增强汞胁迫耐受性,减少蓄积,促进植株生长 | [ | |
S. maltophilia(R5-5), 来源于水稻 | 镉 | 水稻 | 显著增强植株镉胁迫耐受性,减少镉吸收和蓄积 | [ |
Exiguobacterium indicum(SA22),来源于月见草 | 水稻 | 提高植株镉胁迫耐受性,降低镉吸收和蓄积 | [ | |
Cladosporium sp.(z113), 来源于车前草 | 玉米 | 增强植株镉胁迫耐受能力,减少镉吸收和蓄积,促进植株生长 | [ | |
Bacillus sp.(GR44), 来源于杠柳 | 小麦 | 显著增强小麦植株的镉耐受能力,促进植株生长 | [ | |
Sphingomonas sp.(LK11),来源于山毛豆 | 大豆 | 增强大豆植株镉耐受性,减少植株镉吸收和转运 | [ | |
Enterobacter ludwigii(SAK5), 来源于稗草 | 镍 | 水稻 | 提高植株镍胁迫耐受性,降低镍吸收和蓄积 | [ |
Caulobacter sp.(MN13), 来源于玉米 | 芝麻 | 提高植株镍胁迫耐受性,降低镍吸收、富集营养物 | [ | |
Bacillus pumilus, 来源于水稻 | 砷 | 水稻 | 提高植株对砷胁迫的防御能力和耐受性,降低砷吸收和积累 | [ |
Serratia liquefaciens(F2), 来源于水稻 | 水稻 | 显著降低稻粒砷蓄积 | [ | |
Ochrobactrum tritici(As5), 来源于小麦 | 水稻 | 调节植株减少砷吸收和蓄积 | [ | |
Streptomyces sp.(NRC21696), 来源于桑树 | 玉米 | 增强植株砷胁迫耐受性,降低吸收和蓄积,促进植株生长,提高产量 | [ | |
Acinetobacter lwoffii(RJB-2),来源未报道 | 绿豆 | 阻断植株砷吸收,促进植株生长和营养积累 | [ | |
Acinetobacter sp. (nbri05),来源未报道 | 鹰嘴豆 | 降低植株砷吸收,显著促进植株生长,提高产量 | [ | |
Pseudomonas sp.(Ph6-gfp), 来源未报道 | 多环芳烃菲 | 空心菜、 小白菜、 大白菜 | 能够使供试叶菜中菲的污染减少75.2%-93.7% | [ |
Massilia sp.(Pn2), 来源于草本植物看麦娘 | 小麦 | 降低小麦对菲的吸收和蓄积,增加植物根系生物量 | [ | |
Sphingobium sp.(RS1), 来源未报道 | 小白菜、 大白菜 | 使大白菜和小白菜中菲的污染降分别降低42.07%-70.77%和15.79%-53.20% | [ |
Table 1 Application of plant endophyte for regulating environmental hazard factors in edible agricultural products
菌种名称及宿主来源 Species name and host origin | 危害因子 Hazard factor | 供试作物Selected crop | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
P. ruqueforti, 来源于牛茄子 | 铅 | 小麦 | 有效阻断植株铅吸收和蓄积,促进植株生长 | [ |
Streptococcus(GZ01), 来源于钻叶紫苑 | 大豆 | 增强植株铅胁迫耐受力,降低铅吸收和蓄积,促进植株生长 | [ | |
Mucor sp.(MHR-7), 来源于银胶菊 | 铬 | 芥菜 | 增强芥菜铬胁迫耐受性,减少植株铬吸收和积累 | [ |
Pantoea sp.(BacI23), 来源于豆科植物 | 汞 | 玉米 | 增强植株汞胁迫耐受性,减少汞吸收和蓄积,促进植株生长 | [ |
Photobacterium spp.(MELD1),来源于芦苇 | 豇豆 | 增强汞胁迫耐受性,减少蓄积,促进植株生长 | [ | |
S. maltophilia(R5-5), 来源于水稻 | 镉 | 水稻 | 显著增强植株镉胁迫耐受性,减少镉吸收和蓄积 | [ |
Exiguobacterium indicum(SA22),来源于月见草 | 水稻 | 提高植株镉胁迫耐受性,降低镉吸收和蓄积 | [ | |
Cladosporium sp.(z113), 来源于车前草 | 玉米 | 增强植株镉胁迫耐受能力,减少镉吸收和蓄积,促进植株生长 | [ | |
Bacillus sp.(GR44), 来源于杠柳 | 小麦 | 显著增强小麦植株的镉耐受能力,促进植株生长 | [ | |
Sphingomonas sp.(LK11),来源于山毛豆 | 大豆 | 增强大豆植株镉耐受性,减少植株镉吸收和转运 | [ | |
Enterobacter ludwigii(SAK5), 来源于稗草 | 镍 | 水稻 | 提高植株镍胁迫耐受性,降低镍吸收和蓄积 | [ |
Caulobacter sp.(MN13), 来源于玉米 | 芝麻 | 提高植株镍胁迫耐受性,降低镍吸收、富集营养物 | [ | |
Bacillus pumilus, 来源于水稻 | 砷 | 水稻 | 提高植株对砷胁迫的防御能力和耐受性,降低砷吸收和积累 | [ |
Serratia liquefaciens(F2), 来源于水稻 | 水稻 | 显著降低稻粒砷蓄积 | [ | |
Ochrobactrum tritici(As5), 来源于小麦 | 水稻 | 调节植株减少砷吸收和蓄积 | [ | |
Streptomyces sp.(NRC21696), 来源于桑树 | 玉米 | 增强植株砷胁迫耐受性,降低吸收和蓄积,促进植株生长,提高产量 | [ | |
Acinetobacter lwoffii(RJB-2),来源未报道 | 绿豆 | 阻断植株砷吸收,促进植株生长和营养积累 | [ | |
Acinetobacter sp. (nbri05),来源未报道 | 鹰嘴豆 | 降低植株砷吸收,显著促进植株生长,提高产量 | [ | |
Pseudomonas sp.(Ph6-gfp), 来源未报道 | 多环芳烃菲 | 空心菜、 小白菜、 大白菜 | 能够使供试叶菜中菲的污染减少75.2%-93.7% | [ |
Massilia sp.(Pn2), 来源于草本植物看麦娘 | 小麦 | 降低小麦对菲的吸收和蓄积,增加植物根系生物量 | [ | |
Sphingobium sp.(RS1), 来源未报道 | 小白菜、 大白菜 | 使大白菜和小白菜中菲的污染降分别降低42.07%-70.77%和15.79%-53.20% | [ |
菌种名称及宿主来源 Species name and host origin | 危害因子 Hazard factor | 供试作物Selected crop | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Bacillus amyloliquefaciens (JR20),来源于韭菜 | 邻苯二甲酸二丁酯 | 绿叶蔬菜 | 能有效降解邻苯二甲酸二丁酯,减少绿叶菜中的农药残留 | [ |
P. aeruginosa(RRA), 来源于水稻 | 毒死蜱 | 水稻 | 能有效降解毒死蜱,减少在水稻中的农药残留 | [ |
Sphingomonas(HJY), 来源于韭菜 | 韭菜 | 能有效降解毒死蜱,减少在韭菜中的农药残留 | [ | |
Enterobacter sp.(TMX13), 来源于桑树 | 噻虫嗪 | 大白菜 | 显著降解噻虫嗪,减少在白菜上的农药残留 | [ |
Enterobacter cloacae (TMX-6),来源于麦冬 | 水稻 | 促进噻虫嗪在水稻植株体内降解,减少农药残留 | [ | |
Ensifer adhaerens(TMX-23),来源于大豆 | 大豆 | 显著降解噻虫嗪,减少在大豆植株上的农药残留 | [ | |
Streptomyces sp.(atz2), 来源于甘蔗 | 阿特拉津 | 甘蔗 | 能有效降解阿特拉津,减少在甘蔗中的农药残留 | [ |
Pseudomonas putida(POPHV6), 来源于杨树 | 2,4滴 | 豌豆 | 增强豌豆苗对2,4滴的耐药性,降低农药残留 | [ |
Bacillus sp.(Fcl1), 来源于姜黄 | 喹硫磷 | 豇豆 | 增强豇豆幼苗对喹硫磷的毒性作用,提高植株耐药性,降低农药残留 | [ |
Bacillus genus(DB26-R), 来源于水稻 | 二嗪磷 | 水稻 | 能有效降解二嗪磷,减少在水稻中的农药残留 | [ |
Table 2 Application cases of plant endophytic for regulating pesticide hazard factors in edible agricultural products
菌种名称及宿主来源 Species name and host origin | 危害因子 Hazard factor | 供试作物Selected crop | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Bacillus amyloliquefaciens (JR20),来源于韭菜 | 邻苯二甲酸二丁酯 | 绿叶蔬菜 | 能有效降解邻苯二甲酸二丁酯,减少绿叶菜中的农药残留 | [ |
P. aeruginosa(RRA), 来源于水稻 | 毒死蜱 | 水稻 | 能有效降解毒死蜱,减少在水稻中的农药残留 | [ |
Sphingomonas(HJY), 来源于韭菜 | 韭菜 | 能有效降解毒死蜱,减少在韭菜中的农药残留 | [ | |
Enterobacter sp.(TMX13), 来源于桑树 | 噻虫嗪 | 大白菜 | 显著降解噻虫嗪,减少在白菜上的农药残留 | [ |
Enterobacter cloacae (TMX-6),来源于麦冬 | 水稻 | 促进噻虫嗪在水稻植株体内降解,减少农药残留 | [ | |
Ensifer adhaerens(TMX-23),来源于大豆 | 大豆 | 显著降解噻虫嗪,减少在大豆植株上的农药残留 | [ | |
Streptomyces sp.(atz2), 来源于甘蔗 | 阿特拉津 | 甘蔗 | 能有效降解阿特拉津,减少在甘蔗中的农药残留 | [ |
Pseudomonas putida(POPHV6), 来源于杨树 | 2,4滴 | 豌豆 | 增强豌豆苗对2,4滴的耐药性,降低农药残留 | [ |
Bacillus sp.(Fcl1), 来源于姜黄 | 喹硫磷 | 豇豆 | 增强豇豆幼苗对喹硫磷的毒性作用,提高植株耐药性,降低农药残留 | [ |
Bacillus genus(DB26-R), 来源于水稻 | 二嗪磷 | 水稻 | 能有效降解二嗪磷,减少在水稻中的农药残留 | [ |
菌种名称及宿主来源 Species name and host origin | 主要活性成分 Active ingredient | 防控对象 Prevention and control object | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Streptomyces physcomitrii(LD126),来源于苔藓植物 | 放线菌素D | 番茄青枯病 | 盆栽生防率达到84.07% | [ |
Cryptosporiopsis cf.quercina,来源于雷公藤 | 隐霉素 | 稻瘟病 | 对稻瘟病病原菌具有强烈的抑制活性 | [ |
Colletotrichum sp., 来源于黄花蒿 | 麦角固醇类、麦角甾醇类、烯酮类物质 | 小麦全蚀病、纹枯病、根腐病、疫霉病 | 对供试病原菌具有广谱抗性 | [ |
Pseudomonas sp.(SY1), 来源于芦苇 | 挥发性化合物 | 尖孢镰刀菌、弯孢镰刀菌、链孢镰刀菌 | 对3种水稻常见病原菌防治效果达到80%以上 | [ |
Bacillus velezensis(ZSY-1), 来源于中国楸树 | 挥发性化合物 | 番茄早疫病、番茄灰霉病、辣椒枯萎病、辣椒炭疽病 | 对番茄和辣椒几种常见病菌防治率均达到70%以上 | [ |
Bacillus tequilens(wm031), 来源于番茄 | 文中未报道 | 西瓜枯萎病 | 对西瓜枯萎病防治效果达到74.6% | [ |
Bacillus subtilis(BME17),来源于竹子 | 文中未报道 | 水稻白叶枯病 | 对水稻白叶枯病防治率达到43.0% | [ |
Brassica napus L. cv.Casino,来源于油菜 | 文中未报道 | 油菜黄萎病 | 显著减轻油菜黄萎病症状发生 | [ |
P. putida biovar A (MGP1),来源于木瓜 | 文中未报道 | 木瓜炭疽病 | 对木瓜果实炭疽病防治率达到54% | [ |
F. verticillioides, 来源于玉米 | 文中未报道 | 玉米黑粉病 | 显著降低玉米黑粉病发生,促进植株生长 | [ |
Bacillus amyloliquefaciens(BZ6-1),来源于花生 | 文中未报道 | 花生青枯病 | 花生青枯病发病率由对照的84.5%显著降低至12.1% | [ |
Trichoderma harzianum(UP-L1I3),来源于暹罗草 | 文中未报道 | 甜瓜黏茎枯萎病 | 对甜瓜幼苗黏茎枯萎病病原菌防治率达到80%以上 | [ |
Aspergillus sojae, 药用植物到手香 | 2-呋喃羧基醛、 左旋葡萄糖酮 | 斜纹夜蛾 | 明显抑制斜纹夜蛾3龄、4龄幼虫发育 | [ |
Sarocladium strictum, 来源于埃及植物Cynanchum acutum | 顺13-十八烯酸、 癸二酸、 戊甲氧基黄酮、正十六烷酸 | 灰翅夜蛾 | 有效阻断灰翅夜蛾幼虫到蛹的发育过程 | [ |
Streptomyces sp.(BS-1), 来源于药用植物百部 | 吡咯-2-羧酸酯衍生物 | 蚜虫 | 72 h内对蚜虫致死率明显 | [ |
Claviceps pur-purea. (PF-2),来源于醉马草 | 文中未报道 | 蚜虫 | 蚜虫致死率达到90%以上 | [ |
Enterobacter cloacae (SJ-10),来源于水稻 | 植物凝集素 | 白背飞虱 | 对白背稻飞虱具有较强抗性 | [ |
Pseudomonas fluorescens biovar(DLJ1), 来源于辣椒 | 抗氧化物质、 抗氧化酶 | 南方根结线虫 | 有效提高植株对南方根结线虫的抗性 | [ |
Table 3 Application cases of plant endophyte for regulating diseases and insect pests in edible agricultural products
菌种名称及宿主来源 Species name and host origin | 主要活性成分 Active ingredient | 防控对象 Prevention and control object | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Streptomyces physcomitrii(LD126),来源于苔藓植物 | 放线菌素D | 番茄青枯病 | 盆栽生防率达到84.07% | [ |
Cryptosporiopsis cf.quercina,来源于雷公藤 | 隐霉素 | 稻瘟病 | 对稻瘟病病原菌具有强烈的抑制活性 | [ |
Colletotrichum sp., 来源于黄花蒿 | 麦角固醇类、麦角甾醇类、烯酮类物质 | 小麦全蚀病、纹枯病、根腐病、疫霉病 | 对供试病原菌具有广谱抗性 | [ |
Pseudomonas sp.(SY1), 来源于芦苇 | 挥发性化合物 | 尖孢镰刀菌、弯孢镰刀菌、链孢镰刀菌 | 对3种水稻常见病原菌防治效果达到80%以上 | [ |
Bacillus velezensis(ZSY-1), 来源于中国楸树 | 挥发性化合物 | 番茄早疫病、番茄灰霉病、辣椒枯萎病、辣椒炭疽病 | 对番茄和辣椒几种常见病菌防治率均达到70%以上 | [ |
Bacillus tequilens(wm031), 来源于番茄 | 文中未报道 | 西瓜枯萎病 | 对西瓜枯萎病防治效果达到74.6% | [ |
Bacillus subtilis(BME17),来源于竹子 | 文中未报道 | 水稻白叶枯病 | 对水稻白叶枯病防治率达到43.0% | [ |
Brassica napus L. cv.Casino,来源于油菜 | 文中未报道 | 油菜黄萎病 | 显著减轻油菜黄萎病症状发生 | [ |
P. putida biovar A (MGP1),来源于木瓜 | 文中未报道 | 木瓜炭疽病 | 对木瓜果实炭疽病防治率达到54% | [ |
F. verticillioides, 来源于玉米 | 文中未报道 | 玉米黑粉病 | 显著降低玉米黑粉病发生,促进植株生长 | [ |
Bacillus amyloliquefaciens(BZ6-1),来源于花生 | 文中未报道 | 花生青枯病 | 花生青枯病发病率由对照的84.5%显著降低至12.1% | [ |
Trichoderma harzianum(UP-L1I3),来源于暹罗草 | 文中未报道 | 甜瓜黏茎枯萎病 | 对甜瓜幼苗黏茎枯萎病病原菌防治率达到80%以上 | [ |
Aspergillus sojae, 药用植物到手香 | 2-呋喃羧基醛、 左旋葡萄糖酮 | 斜纹夜蛾 | 明显抑制斜纹夜蛾3龄、4龄幼虫发育 | [ |
Sarocladium strictum, 来源于埃及植物Cynanchum acutum | 顺13-十八烯酸、 癸二酸、 戊甲氧基黄酮、正十六烷酸 | 灰翅夜蛾 | 有效阻断灰翅夜蛾幼虫到蛹的发育过程 | [ |
Streptomyces sp.(BS-1), 来源于药用植物百部 | 吡咯-2-羧酸酯衍生物 | 蚜虫 | 72 h内对蚜虫致死率明显 | [ |
Claviceps pur-purea. (PF-2),来源于醉马草 | 文中未报道 | 蚜虫 | 蚜虫致死率达到90%以上 | [ |
Enterobacter cloacae (SJ-10),来源于水稻 | 植物凝集素 | 白背飞虱 | 对白背稻飞虱具有较强抗性 | [ |
Pseudomonas fluorescens biovar(DLJ1), 来源于辣椒 | 抗氧化物质、 抗氧化酶 | 南方根结线虫 | 有效提高植株对南方根结线虫的抗性 | [ |
菌种名称及宿主来源 Species name and host origin | 营养指标 Nutritive index | 供试作物 Selected crops | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Acinetobacter lwoffii (RJB-2),来源未报道 | 叶绿素、 类胡萝卜素 | 绿豆 | 促进绿豆生长,提高叶绿素和类胡萝卜素含量 | [ |
Enterobacter sp.(TMX13),来源于桑树 | 叶绿素 | 大白菜 | 提高叶片叶绿素含量和植株生物量,促进根系发育 | [ |
Ensifer adhaerens(TMX-23),来源于大豆 | 氮元素 | 大豆 | 促进大豆生长,增强植株吸附氮营养元素 | [ |
Bacillus sp.(E5),来源于小麦 | 磷元素、硒元素 | 莴苣 | 强化吸收磷、硒元素,促进生长,提升营养品质 | [ |
Phoma glomerata(LWL2),来源于黄瓜 | 钾元素、钙元素、镁元素 | 黄瓜 | 高盐胁迫下,能显著促进植株生长,增强黄瓜对钾、钙、镁等营养元素吸收和富集 | [ |
Pseudomonas sp.(R185),来源于小麦 | 磷元素 | 小麦 | 促进植株生长,提供小麦产量和品质 | [ |
Bacillus subtilis(DS-178),来源于小麦 | 铁元素、锌元素 | 促进麦粒积累铁、锌元素,提高产量和营养品质 | [ | |
Aspergillus awamori(MQ013),来源于芒萁 | 磷元素、钾元素 | 玉米 | 促进玉米幼苗生长、增强植株吸附磷、钾营养元素 | [ |
Caulobacter sp.(MN13),来源于玉米 | 蛋白质、粗纤维、脂肪 | 芝麻 | 促进芝麻生长,改善营养成分、蓄积微量营养元素 | [ |
Bacillus aryabhattai(MN1),来源于水稻 | 氮元素 | 水稻 | 促进水稻生长,增强植株吸附氮营养元素 | [ |
Sordariomycetes sp.(EF0801),来源于碱蓬莎莎 | 钙元素、铁元素、锰元素 | 促进水稻植株钙、铁、锰等矿质营养元素积累,提升营养品质 | [ | |
P. liquidambari(B3),来源于重阳木 | 氮元素、叶绿素 | 促进植株氮吸收,显著提高水稻可溶性蛋白、游离氨基酸、游离NH4+以及叶绿素含量 | [ | |
Bacillus velezensis(LDO2),来源于花生 | 磷元素、铁元素 | 花生 | 提升花生吸收磷、铁元素能力,促进植株生长 | [ |
P. resedanum(LK6),来源于辣椒 | 氨基酸类、黄酮类 | 辣椒 | 促进辣椒积累氨基酸和黄酮类物质,提升营养品质 | [ |
Table 4 Application of plant endophyte for regulating nutritional quality of edible agricultural products
菌种名称及宿主来源 Species name and host origin | 营养指标 Nutritive index | 供试作物 Selected crops | 调控效果 Regulation effect | 文献来源Reference |
---|---|---|---|---|
Acinetobacter lwoffii (RJB-2),来源未报道 | 叶绿素、 类胡萝卜素 | 绿豆 | 促进绿豆生长,提高叶绿素和类胡萝卜素含量 | [ |
Enterobacter sp.(TMX13),来源于桑树 | 叶绿素 | 大白菜 | 提高叶片叶绿素含量和植株生物量,促进根系发育 | [ |
Ensifer adhaerens(TMX-23),来源于大豆 | 氮元素 | 大豆 | 促进大豆生长,增强植株吸附氮营养元素 | [ |
Bacillus sp.(E5),来源于小麦 | 磷元素、硒元素 | 莴苣 | 强化吸收磷、硒元素,促进生长,提升营养品质 | [ |
Phoma glomerata(LWL2),来源于黄瓜 | 钾元素、钙元素、镁元素 | 黄瓜 | 高盐胁迫下,能显著促进植株生长,增强黄瓜对钾、钙、镁等营养元素吸收和富集 | [ |
Pseudomonas sp.(R185),来源于小麦 | 磷元素 | 小麦 | 促进植株生长,提供小麦产量和品质 | [ |
Bacillus subtilis(DS-178),来源于小麦 | 铁元素、锌元素 | 促进麦粒积累铁、锌元素,提高产量和营养品质 | [ | |
Aspergillus awamori(MQ013),来源于芒萁 | 磷元素、钾元素 | 玉米 | 促进玉米幼苗生长、增强植株吸附磷、钾营养元素 | [ |
Caulobacter sp.(MN13),来源于玉米 | 蛋白质、粗纤维、脂肪 | 芝麻 | 促进芝麻生长,改善营养成分、蓄积微量营养元素 | [ |
Bacillus aryabhattai(MN1),来源于水稻 | 氮元素 | 水稻 | 促进水稻生长,增强植株吸附氮营养元素 | [ |
Sordariomycetes sp.(EF0801),来源于碱蓬莎莎 | 钙元素、铁元素、锰元素 | 促进水稻植株钙、铁、锰等矿质营养元素积累,提升营养品质 | [ | |
P. liquidambari(B3),来源于重阳木 | 氮元素、叶绿素 | 促进植株氮吸收,显著提高水稻可溶性蛋白、游离氨基酸、游离NH4+以及叶绿素含量 | [ | |
Bacillus velezensis(LDO2),来源于花生 | 磷元素、铁元素 | 花生 | 提升花生吸收磷、铁元素能力,促进植株生长 | [ |
P. resedanum(LK6),来源于辣椒 | 氨基酸类、黄酮类 | 辣椒 | 促进辣椒积累氨基酸和黄酮类物质,提升营养品质 | [ |
[1] | 徐重新, 张霄, 刘媛, 等. 抗独特型抗体在食用农产品危害物监控中的应用研究[J]. 食品科学技术学报, 2019, 37(4):103-110. |
Xu CX, Zhang X, Liu Y, et al. Study on anti-idiotype antibodies used for monitoring hazards in edible agricultural products[J]. J Food Sci Technol, 2019, 37(4):103-110. | |
[2] |
Khandpur P, Gogate PR. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices[J]. Ultrason Sonochem, 2015, 27:125-136.
doi: 10.1016/j.ultsonch.2015.05.008 URL |
[3] |
Bohrer BM. Review:Nutrient density and nutritional value of meat products and non-meat foods high in protein[J]. Trends Food Sci Technol, 2017, 65:103-112.
doi: 10.1016/j.tifs.2017.04.016 URL |
[4] |
Qin H, Hu T, Zhai Y, et al. The improved methods of heavy metals removal by biosorbents:a review[J]. Environ Pollut, 2020, 258:113777.
doi: 10.1016/j.envpol.2019.113777 URL |
[5] |
Alves RN, Rambla-Alegre M, Braga AC, et al. Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood:an in vitro digestion approach[J]. Food Chem Toxicol, 2019, 129:153-161.
doi: 10.1016/j.fct.2019.04.041 URL |
[6] |
Damalas C, Koutroubas S. Current status and recent developments in biopesticide use[J]. Agriculture, 2018, 8(1):13.
doi: 10.3390/agriculture8010013 URL |
[7] |
Sierra JM, Viñas M. Future prospects for antimicrobial peptide development:peptidomimetics and antimicrobial combinations[J]. Expert Opin Drug Discov, 2021, 16(6):601-604.
doi: 10.1080/17460441.2021.1892072 URL |
[8] |
Zhang M, Yao YL, Tian YH, et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems[J]. Field Crop Res, 2018, 227:102-109.
doi: 10.1016/j.fcr.2018.08.010 URL |
[9] | Ni Z, Han Q, He YQ, et al. Application of genome editing technology in crop improvement[J]. Cereal Chem J, 2018, 95(1):35-48. |
[10] | Shi XJ, An XS, Zhao QX, et al. State-of-the-art internet of things in protected agriculture[J]. Sensors(Basel), 2019, 19(8):1833. |
[11] |
Khare E, Mishra J, Arora NK. Multifaceted interactions between endophytes and plant:developments and prospects[J]. Front Microbiol, 2018, 9:2732.
doi: 10.3389/fmicb.2018.02732 pmid: 30498482 |
[12] |
Morales-Cedeño LR, Orozco-Mosqueda MDC, Loeza-Lara PD, et al. Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases:Fundamentals, methods of application and future perspectives[J]. Microbiol Res, 2021, 242:126612.
doi: 10.1016/j.micres.2020.126612 URL |
[13] |
Emami S, Alikhani HA, Pourbabaee AA, et al. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils[J]. Rhizosphere, 2020, 14:100196.
doi: 10.1016/j.rhisph.2020.100196 URL |
[14] |
Ważny R, Rozpądek P, Domka A, et al. The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators[J]. Sci Total Environ, 2021, 768:144666.
doi: 10.1016/j.scitotenv.2020.144666 URL |
[15] | Jan R, Khan MA, Asaf S, et al. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones[J]. Plants(Basel), 2019, 8(10):E363. |
[16] |
Feng FY, Ge J, Li YS, et al. Enhanced degradation of chlorpyrifos in rice(Oryza sativa L.)by five strains of endophytic bacteria and their plant growth promotional ability[J]. Chemosphere, 2017, 184:505-513.
doi: 10.1016/j.chemosphere.2017.05.178 URL |
[17] | Saad MMG, Badry HH. Phytohormones producing fungal endophytes enhance nutritional status and suppress pathogenic fungal infection in tomato[J]. J Agri Sci Tech, 2020, 22(5):1383-1395. |
[18] | Zhang Y, Han T, Ming Q, et al. Alkaloids produced by endophytic fungi:a review[J]. Nat Prod Commun, 2012, 7(7):963-968. |
[19] |
Singh M, Kumar A, Singh R, et al. Endophytic bacteria:a new source of bioactive compounds[J]. 3 Biotech, 2017, 7(5):315.
doi: 10.1007/s13205-017-0942-z URL |
[20] |
Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics[J]. Biochem Pharmacol, 2017, 134:1-17.
doi: S0006-2952(16)30379-3 pmid: 27984002 |
[21] |
Yang W, Lang YH, Li GL. Cancer risk of polycyclic aromatic hydrocarbons(PAHs)in the soils from Jiaozhou Bay wetland[J]. Chemosphere, 2014, 112:289-295.
doi: 10.1016/j.chemosphere.2014.04.074 pmid: 25048918 |
[22] |
Ikram M, Ali N, Jan G, et al. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils[J]. PLoS One, 2018, 13(11):e0208150.
doi: 10.1371/journal.pone.0208150 URL |
[23] |
Dolphen R, Thiravetyan P. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J]. Chemosphere, 2019, 223:448-454.
doi: S0045-6535(19)30271-1 pmid: 30784751 |
[24] | 王红珠, 吴华芬, 吕高卿, 等. 耐铅植物内生菌的筛选及其促生机制研究[J]. 浙江农业科学, 2021, 62(4):823-827. |
Wang HZ, Wu HF, Lv GQ, et al. Screening and promoting mechanism study of Pb-resistant endophytes[J]. J Zhejiang Agric Sci, 2021, 62(4):823-827. | |
[25] | 詹寿发, 卢丹妮, 毛花英, 等. 2株溶磷、解钾与产IAA的内生真菌菌株的筛选、鉴定及促生作用研究[J]. 中国土壤与肥料, 2017(3):142-151. |
Zhan SF, Lu DN, Mao HY, et al. Isolation of two phosphate/potaaium-solubilizing and IAA-producing strains of endophytic fungi and their plant growth promoting function[J]. Soil Fertil Sci China, 2017(3):142-151. | |
[26] |
Cheng C, Nie ZW, He LY, et al. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil[J]. Environ Pollut, 2020, 259:113832.
doi: 10.1016/j.envpol.2019.113832 URL |
[27] |
Zahoor M, Irshad M, Rahman H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxicol Environ Saf, 2017, 142:139-149.
doi: 10.1016/j.ecoenv.2017.04.005 URL |
[28] |
Chen S, Ma Z, Li S, et al. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environ Int, 2019, 132:105081.
doi: 10.1016/j.envint.2019.105081 URL |
[29] |
Mello IS, Pietro-Souza W, Barros BM, et al. Endophytic bacteria mitigate mercury toxicity to host plants[J]. Symbiosis, 2019, 79(3):251-262.
doi: 10.1007/s13199-019-00644-0 URL |
[30] |
Mathew DC, Ho YN, Gicana RG, et al. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury[J]. PLoS One, 2015, 10(3):e0121178.
doi: 10.1371/journal.pone.0121178 URL |
[31] |
Zhou J, Li P, Meng D, et al. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment[J]. Environ Pollut, 2020, 260:113990.
doi: 10.1016/j.envpol.2020.113990 URL |
[32] | 张杰. 云南两个重金属矿区(暮乃、个旧)深色有隔内生真菌(DSE)的研究[D]. 昆明: 云南大学, 2010. |
Zhang J. Studies on dark septate endophytes(DSE)in Munai and Gejiu mine area in Yunnan[D]. Kunming: Yunnan University, 2010. | |
[33] | 刘军生, 解修超, 罗阳兰, 等. 植物抗镉内生细菌筛选及其对小麦幼苗耐镉能力的影响[J]. 南方农业学报, 2018, 49(12):2379-2386. |
Liu JS, Xie XC, Luo YL, et al. Screening of cadmium-resistant endophytic bacteria and its effect on enhancing cadmium tolerance of wheat seeding[J]. J South Agric, 2018, 49(12):2379-2386. | |
[34] |
Bilal S, Khan AL, Shahzad R, et al. Mechanisms of Cr(VI)resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI)phytotoxic mitigating effects in soybean(Glycine max L.)[J]. Ecotoxicol Environ Saf, 2018, 164:648-658.
doi: 10.1016/j.ecoenv.2018.08.043 URL |
[35] |
Naveed M, Bukhari SS, Mustafa A, et al. Mitigation of nickel toxicity and growth promotion in sesame through the application of a bacterial endophyte and zeolite in nickel contaminated soil[J]. Int J Environ Res Public Health, 2020, 17(23):8859.
doi: 10.3390/ijerph17238859 URL |
[36] |
Moens M, Branco R, Morais PV. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels[J]. World J Microbiol Biotechnol, 2020, 36(2):23.
doi: 10.1007/s11274-020-2800-0 URL |
[37] | Al-Huqail AA, El-Bondkly AMA. Improvement of Zea mays L. growth parameters under chromium and arsenic stress by the heavy metal-resistant Streptomyces sp. NRC21696[J]. Int J Environ Sci Technol, 2021:1-22. |
[38] |
Das J, Sarkar P. Remediation of arsenic in mung bean(Vigna radiata)with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii[J]. Sci Total Environ, 2018, 624:1106-1118.
doi: 10.1016/j.scitotenv.2017.12.157 URL |
[39] |
Srivastava S, Singh N. Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp[J]. Ecol Eng, 2014, 70:146-153.
doi: 10.1016/j.ecoleng.2014.05.008 URL |
[40] |
Liu J, Xiang YB, Zhang ZM, et al. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat[J]. Appl Microbiol Biotechnol, 2017, 101(12):5199-5212.
doi: 10.1007/s00253-017-8247-z URL |
[41] |
Wang J, Liu J, Ling W, et al. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables[J]. Sci Total Environ, 2017, 598:471-478.
doi: 10.1016/j.scitotenv.2017.04.126 URL |
[42] | 徐重新, 刘敏, 张霄, 等. 农药危害风险及其残留检测用广谱特异性抗体研究进展[J]. 江苏农业学报, 2019, 35(2):489-496. |
Xu CX, Liu M, Zhang X, et al. Advances in the development of broad-specificity antibodies for pesticide residue determination[J]. Jiangsu J Agric Sci, 2019, 35(2):489-496. | |
[43] |
Garipova SR. Perspectives on using endophytic bacteria for the bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics[J]. Biol Bull Rev, 2014, 4(4):300-310.
doi: 10.1134/S2079086414040033 URL |
[44] |
Yuan L, Cheng J, Chu Q, et al. Di-n-butyl phthalate degrading endophytic bacterium Bacillus amyloliquefaciens subsp. strain JR20 isolated from garlic chive and its colonization in a leafy vegetable[J]. J Environ Sci Health B, 2019, 54(8):693-701.
doi: 10.1080/03601234.2019.1633211 URL |
[45] |
Feng F, Ge J, Li Y, et al. Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives(Allium tuberosum)[J]. J Agric Food Chem, 2017, 65(6):1131-1138.
doi: 10.1021/acs.jafc.6b05283 URL |
[46] |
Wang WF, Wan Q, Li YX, et al. Application of an endophyte Enterobacter sp. TMX13 to reduce thiamethoxam residues and stress in Chinese cabbage(Brassica chinensis L)[J]. J Agric Food Chem, 2020, 68(34):9180-9187.
doi: 10.1021/acs.jafc.0c03523 URL |
[47] |
Zhan H, Wan Q, Wang Y, et al. An endophytic bacterial strain, Enterobacter cloacae TMX-6, enhances the degradation of thiamethoxam in rice plants[J]. Chemosphere, 2021, 269:128751.
doi: 10.1016/j.chemosphere.2020.128751 URL |
[48] |
Zhou GC, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23[J]. Appl Microbiol Biotechnol, 2013, 97(9):4065-4074.
doi: 10.1007/s00253-012-4638-3 URL |
[49] |
Mesquini JA, Sawaya ACHF, Lopez BGC, et al. Detoxification of atrazine by endophytic Streptomyces sp. isolated from sugarcane and detection of nontoxic metabolite[J]. Bull Environ Contam Toxicol, 2015, 95(6):803-809.
doi: 10.1007/s00128-015-1673-7 URL |
[50] |
Germaine KJ, Liu X, Cabellos GG, et al. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid[J]. FEMS Microbiol Ecol, 2006, 57(2):302-310.
pmid: 16867147 |
[51] |
Juby S, Choyikutty D, Nayana AR, et al. Quinalphos tolerant endophytic Bacillus sp. Fcl1 and its toxicity-alleviating effect in Vigna unguiculata[J]. Curr Microbiol, 2021, 78(3):904-910.
doi: 10.1007/s00284-020-02317-4 URL |
[52] |
Nasrollahi M, Pourbabaei AA, Etesami H, et al. Diazinon degradation by bacterial endophytes in rice plant(Oryzia sativa L.):a possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer[J]. Chemosphere, 2020, 246:125759.
doi: 10.1016/j.chemosphere.2019.125759 URL |
[53] |
Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. Endophytes as sources of antibiotics[J]. Biochem Pharmacol, 2017, 134:1-17.
doi: S0006-2952(16)30379-3 pmid: 27984002 |
[54] |
Lu H, Zou WX, Meng JC, et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua[J]. Plant Sci, 2000, 151(1):67-73.
doi: 10.1016/S0168-9452(99)00199-5 URL |
[55] |
Verma SK, Kingsley KL, Bergen MS, et al. Fungal disease prevention in seedlings of rice(Oryza sativa)and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis[J]. Microorganisms, 2018, 6(1):21.
doi: 10.3390/microorganisms6010021 URL |
[56] |
Elango D, Manikandan V, Jayanthi P, et al. Selection and characterization of extracellular enzyme production by an endophytic fungi Aspergillus sojae and its bio-efficacy analysis against cotton leaf worm, Spodoptera litura[J]. Curr Plant Biol, 2020, 23:100153.
doi: 10.1016/j.cpb.2020.100153 URL |
[57] |
El-Sayed ASA, Moustafa AH, Hussein HA, et al. Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynanchum acutum, against Spodoptera littoralis, a polyphagous insect pest[J]. Biocatal Agric Biotechnol, 2020, 24:101524.
doi: 10.1016/j.bcab.2020.101524 URL |
[58] |
Zhang XF, Li JJ, Qi GF, et al. Insecticidal effect of recombinant endophytic bacterium containing Pinellia ternata agglutinin against white backed planthopper, Sogatella furcifera[J]. Crop Prot, 2011, 30(11):1478-1484.
doi: 10.1016/j.cropro.2011.07.012 URL |
[59] | 庄晓新. 云南不同生境来源苔藓可培养内生放线菌多样性分析及抗青枯病活性研究[D]. 哈尔滨: 东北农业大学, 2020. |
Zhuang XX. Study on diversity of culturable endophytic actinobacteria from moss of different habitats in Yunnan Province and their antibacterial activity against Ralstonia solanacearum[D]. Harbin: Northeast Agricultural University, 2020. | |
[60] |
Zhao HM, Yang AP, Zhang N, et al. Insecticidal endostemonines A-J produced by endophytic Streptomyces from Stemona sessilifolia[J]. J Agric Food Chem, 2020, 68(6):1588-1595.
doi: 10.1021/acs.jafc.9b06755 URL |
[61] | 杨亚茹, 茆少星, 闫淑珍, 等. 两株植物内生菌促生和诱导辣椒植株对南方根结线虫抗性的比较分析[J]. 南京师大学报:自然科学版, 2019, 42(4):77-84. |
Yang YR, Mao SX, Yan SZ, et al. Comparative analysis of growth promotion and resistance induction of pepper plants to Meloidogyne incognita by two endophytes[J]. J Nanjing Norm Univ:Nat Sci Ed, 2019, 42(4):77-84. | |
[62] |
Li JY, Strobel G, Harper J, et al. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina[J]. Org Lett, 2000, 2(6):767-770.
pmid: 10754679 |
[63] |
Gao ZF, Zhang BJ, Liu HP, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biol Control, 2017, 105:27-39.
doi: 10.1016/j.biocontrol.2016.11.007 URL |
[64] | 张猛, 王琼, 冯发运, 等. 植物内生特基拉芽胞杆菌的分离、鉴定及防治西瓜枯萎病效果[J]. 中国生物防治学报, 2017, 33(3):371-377. |
Zhang M, Wang Q, Feng FY, et al. Isolation and identification of plant endophyte bacterial Bacillus tequilens and its control effect against watermelon Fusarium wilt[J]. Chin J Biol Control, 2017, 33(3):371-377. | |
[65] | 邹路路, 余雷, 凃昌, 等. 孝顺竹内生菌BME17对水稻白叶枯和条斑病生防效果的初步研究[J]. 湖北大学学报:自然科学版, 2019, 41(6):578-583, 602. |
Zou LL, Yu L, Tu C, et al. Preliminary study on the biocontrol effect of endophytic bacteria BME17 isolated from Bambusa multiplex on rice bacterial blight and stripe blight[J]. J Hubei Univ:Nat Sci, 2019, 41(6):578-583, 602. | |
[66] |
Nejad P, Johnson PA. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato[J]. Biol Control, 2000, 18(3):208-215.
doi: 10.1006/bcon.2000.0837 URL |
[67] |
Shi J, Liu A, Li X, et al. Identification of endophytic bacterial strain MGP1 selected from Papaya and its biocontrol effects on pathogens infecting harvested Papaya fruit[J]. J Sci Food Agric, 2010, 90(2):227-232.
doi: 10.1002/jsfa.3798 URL |
[68] |
Lee K, Pan JJ, May G. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize[J]. FEMS Microbiol Lett, 2009, 299(1):31-37.
doi: 10.1111/j.1574-6968.2009.01719.x URL |
[69] | Wang X, Liang G. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum[J]. Biomed Res Int, 2014, 2014:465435. |
[70] |
Nuangmek W, Aiduang W, Kumla J, et al. Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon[J]. Front Microbiol, 2021, 12:634772.
doi: 10.3389/fmicb.2021.634772 URL |
[71] | Shi Y, Zhang X, Lou K. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians[J]. J Insect Sci, 2013, 13:151. |
[72] | 朱宏, 梁克红, 徐海泉, 等. 我国农产品营养标准体系现状与发展建议[J]. 中国农业科学, 2019, 52(18):3145-3154. |
Zhu H, Liang KH, Xu HQ, et al. Review and suggestion for nutrition standard of agricultural products in China[J]. Sci Agric Sin, 2019, 52(18):3145-3154. | |
[73] |
Eid AM, Fouda A, Abdel-Rahman MA, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications:an overview[J]. Plants, 2021, 10(5):935.
doi: 10.3390/plants10050935 URL |
[74] |
Rai M, Rathod D, Agarkar G, et al. Fungal growth promotor endophytes:a pragmatic approach towards sustainable food and agriculture[J]. Symbiosis, 2014, 62(2):63-79.
doi: 10.1007/s13199-014-0273-3 URL |
[75] | Durán P, Acuña JJ, Armada E, et al. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress[J]. J Soil Sci Plant Nutr, 2016, 16(1):201-225. |
[76] |
Waqas M, Khan AL, Kamran M, et al. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress[J]. Molecules, 2012, 17(9):10754-10773.
doi: 10.3390/molecules170910754 URL |
[77] |
Singh D, Geat N, Rajawat MVS, et al. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content[J]. Ann Microbiol, 2018, 68(12):815-833.
doi: 10.1007/s13213-018-1388-1 URL |
[78] |
Shen FT, Yen JH, Liao CS, et al. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics[J]. Sustainability, 2019, 11(4):1133.
doi: 10.3390/su11041133 URL |
[79] |
Li XM, Ma LJ, Bu N, et al. Endophytic infection modifies organic acid and mineral element accumulation by rice under Na2CO3 stress[J]. Plant Soil, 2017, 420(1/2):93-103.
doi: 10.1007/s11104-017-3378-7 URL |
[80] |
Yang B, Wang XM, Ma HY, et al. Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice[J]. Plant Growth Regul, 2014, 73(2):165-179.
doi: 10.1007/s10725-013-9878-4 URL |
[81] |
Chen L, Shi H, Heng J, et al. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiol Res, 2019, 218:41-48.
doi: 10.1016/j.micres.2018.10.002 URL |
[82] |
Khan AL, Kang SM, Dhakal KH, et al. Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes[J]. Sci Hortic, 2013, 155:1-7.
doi: 10.1016/j.scienta.2013.02.028 URL |
[83] |
Ijaz A, Imran A, Anwar ul Haq M, et al. Phytoremediation:recent advances in plant-endophytic synergistic interactions[J]. Plant Soil, 2016, 405(1/2):179-195.
doi: 10.1007/s11104-015-2606-2 URL |
[84] |
Matsumoto A, Takahashi Y. Endophytic actinomycetes:promising source of novel bioactive compounds[J]. J Antibiot:Tokyo, 2017, 70(5):514-519.
doi: 10.1038/ja.2017.20 URL |
[1] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||