Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 263-274.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1471
Previous Articles Next Articles
WANG Nan(), SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo()
Received:
2020-12-02
Online:
2021-08-26
Published:
2021-09-10
Contact:
ZHANG Xin-guo
E-mail:1772708516@qq.com;biodrug@163.com
WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes[J]. Biotechnology Bulletin, 2021, 37(8): 263-274.
植物来源 Plant source | 内生菌 Endophytes | 化合物 Compounds | 抑菌活性 Antibacterial activity | 文献 Reference |
---|---|---|---|---|
Kennedia nigriscans | Streptomyces sp. NRRL3052 | Munumbicins B | 对MRSA菌株有明显的抑制作用,MIC值为2.5 μg/mL | [ |
Kennedia nigricans | Streptomyces sp.NRRL30562 | Munumbicins E-4和E-5 | 对MRSA有明显的抑制作用,MIC值分别为8 μg/mL和 16 μg/mL | [ |
鼠尾草Grevillea pteridifolia | Streptomyces sp.NRRL30566 | Kakadumycin A | 对VRE以及MRSA均具有强烈的抑制作用,MIC值分别为0.062 μg/mL和 0.5 μg/mL | [ |
纽扣树buttonwood tree | Cytospora sp. CR200 | Cytosporone D和E | 对MRSA310、屎肠球菌α379、屎肠球菌α436等多株耐药微生物菌株具有中度的体外抗菌活性,MIC值范围是8-64 μg/mL | [ |
红树林植物卤蕨Acrostichum aureurm | Penicillium sp.0935030 | 环(脯氨酸-苏氨酸)和环(脯氨酸-酪氨酸) Ring(proline-threonine)and ring(proline-tyrosine) | 均具有明显抑制MRSA的活性 | [ |
Tiliacora triandra | Dothideomycete sp. | Dothideomycetide A | 对MRSA菌株显示出抗菌活性,MIC值为256 μg/mL | [ |
红树林植物Pongamia pinnata | Nigrospora sp. MA75 | Griseophenone C和Tetrahydrobostrycin | 对MRSA均表现出显著的抑制活性,MIC值分别为0.5 μg/mL和2 μg/mL | [ |
海藻Fucus sp. | Streptomyces sp.WR1L1S8 | [=2-hydroxy-5-((6-hydroxy- 4-oxo-4H-pyran-2-yl)methyl)-2- propylchroman-4-one] | 对革兰氏阳性致病性MRSA的选择性抑制活性,MIC值为6 μmol/L | [ |
褐藻Rosenvingea sp. | Pestalotia sp. | Pestalone | 对MRSA和VRE均显示出有效的抑菌活性,MIC 值分别为37 ng/mL和78 ng/mL | [ |
桂皮Cinnamomum kanehirae | Fusarium oxyporum | Beauvericin和(-)-4,6'-脱水氨基哌啶酮 Beauvericin and(-)-4,6'-anhydrooxysporidinone | 对MRSA有抑制活性,MIC值分别为3.125 μg/mL和 100 μg/mL | [ |
红树林植物Rhizophora apiculataz | Phomopsis sp.PSU-MA214 | Phomopsanthraquinone | 对金黄色葡萄球菌及MRSA良好的抑菌活性,MIC值为128 μg/mL和64 μg/mL | [ |
水稻Oryza sativa L. | Streptomyces sp. BCC72023 | Efomycin M、efomycin G和oxohygrolidin | 对K-1多药耐药菌株 Plasmodium falciparum良好的抑制活性(IC50值在1.40-5.23 μg/mL范围内),且化合物efomycin G2对普通蜡状芽孢杆菌也具有较强的抗菌活性,MIC值为3.13 μg/mL | [ |
Daphnopsis americana | 内生真菌CR115 Endophytic fungi CR115 | Guanacastepene A | 对耐药菌株MRSA和VRE显示出良好的抑制作用 | [ |
海洋红藻物种Laurencia | Penicillium chrysogenum QEN-24S | Conidiogenone B | 对MRSA具有显著的抗菌活性,MIC值为8 μg/mL | [ |
苔藓Everniastrum sp. | 内生真菌Ulocladium sp. Endophytic fungi Ulocladium sp. | Ophiobolin P和Ophiobolin T | 均对MRSA具有中等的抗菌活性,MIC值分别为31.3 μg/mL和15.6 μg/mL | [ |
红树林 Kandelia candel | Streptomyces sp. HKI0595 | Xiamycin | 对MRSA菌株和VRE菌株具有良好抑制作用,抑制范围分别为14 mm和12 mm | [ |
头花蓼Polygonum capitatum Buch.-Ham. ex D. Don | Alternaria tenuissima sp. PC-005 | 5-甲氧基格链孢酚 Ahernariol 5-O-methyl ether | 该化合物对肺炎克雷伯杆菌、普通变形杆菌、表皮葡萄球菌、大肠埃希菌、金黄色葡萄球菌、奇异变形杆菌、屎肠球菌等7种耐药微生物均具有良好的抑菌活性,MIC值分别为125、250、125、250、250、125和500 μg/mL | [ |
头花蓼Polygonum capitatum Buch.-Ham. ex D. Don | Gibberella intermedia | 镰刀菌酸 Fusaric acid | 对多重耐药大肠埃希菌、金黄色葡萄球菌和奇异变形杆菌具有抑制作用,MIC值分别为31.3、125、62.5 mg/mL | [ |
红树林Mangrove | Xylaria cubensis PSU-MA34 | Xylacinicacids A and B、2-hexylidene-3-methyl succinic acid 4-methylester、cytochalasin D以及2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione等 | 均对金黄色葡萄球菌ATCC 25923和MRSA有抑制作用,其中化合物2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione对金黄色葡萄球菌和MRSA菌株的MIC值为128 μg/ mL | [ |
Garcinia mangostana | Matryephaeria mamane PSU-M76 | Botryomaman,2,4-二甲氧基-6-戊基苯酚、(R)-(-)-mellein、primin、顺式4-羟基海藻油、反式-4-羟基海藻油和4,5二羟基-2-己烯酸 Botryomaman,2,4-dimethoxy-6-pentylphenol,(R)-(-)-mellein,primin,cis-4-hydroxymellein,trans-4-hydroxymellein and 4,5-dihydroxy-2-hexenoic acid | 所有化合物对MRSA菌株SK1均有抗菌活性。其中化合物 Primin表现出最佳抑制活性,MIC值为8 μg/mL | [ |
柽柳Tamarix | Streptomyces CLR304 | 304A(维吉尼霉素M1) | 对MRSE、MRSA、VISA、VRE有一定抗菌活性,MIC值均在1-4 μg/mL范围内 | [ |
Vochysia divergens | Aeromicrobium ponti LGMB491 | 1-acetyl-β-carboline、indole-3-carbaldehyde、3-(hydroxyacetyl)-indole、brevianamide F、cyclo-(L-Pro-L-Phe) | 对MSSA和MRSA均显示中等抑制活性 | [ |
药用植物Malay peninsula | 内生链霉菌Streptomyces SUK 25 | cyclo-(L-Val-L-Pro)、cyclo-(L-Leu-L-Pro)、cyclo-(L-Phe-L-Pro)、cyclo-(L-Val-L-Phe)和N-(7-hydroxy-6-methyl-octyl)-acetamide | 对MRSA菌株ATCC 43300有良好的抑制活性,其中cyclo-(L-Leu-L-Pro)对VRE菌株,具有抑制作用,MIC值为12.5 μg/mL | [ |
决明子Cinnamomum cassia Prels | S. cavourensis YBQ59 | 1-monolinolein、bafilomycin D、nonactic acid、daidzein、3’-hydroxydaidzein | 对MRSA和MRSE均显示出抗菌活性,1-monolinolein表现出最强的作用,最低抑菌浓度分别为8.5和14.6 μg/mL | [ |
Table 1 Active compounds for anti-drug resistant microorganism from secondary metabolites of plant endophytes
植物来源 Plant source | 内生菌 Endophytes | 化合物 Compounds | 抑菌活性 Antibacterial activity | 文献 Reference |
---|---|---|---|---|
Kennedia nigriscans | Streptomyces sp. NRRL3052 | Munumbicins B | 对MRSA菌株有明显的抑制作用,MIC值为2.5 μg/mL | [ |
Kennedia nigricans | Streptomyces sp.NRRL30562 | Munumbicins E-4和E-5 | 对MRSA有明显的抑制作用,MIC值分别为8 μg/mL和 16 μg/mL | [ |
鼠尾草Grevillea pteridifolia | Streptomyces sp.NRRL30566 | Kakadumycin A | 对VRE以及MRSA均具有强烈的抑制作用,MIC值分别为0.062 μg/mL和 0.5 μg/mL | [ |
纽扣树buttonwood tree | Cytospora sp. CR200 | Cytosporone D和E | 对MRSA310、屎肠球菌α379、屎肠球菌α436等多株耐药微生物菌株具有中度的体外抗菌活性,MIC值范围是8-64 μg/mL | [ |
红树林植物卤蕨Acrostichum aureurm | Penicillium sp.0935030 | 环(脯氨酸-苏氨酸)和环(脯氨酸-酪氨酸) Ring(proline-threonine)and ring(proline-tyrosine) | 均具有明显抑制MRSA的活性 | [ |
Tiliacora triandra | Dothideomycete sp. | Dothideomycetide A | 对MRSA菌株显示出抗菌活性,MIC值为256 μg/mL | [ |
红树林植物Pongamia pinnata | Nigrospora sp. MA75 | Griseophenone C和Tetrahydrobostrycin | 对MRSA均表现出显著的抑制活性,MIC值分别为0.5 μg/mL和2 μg/mL | [ |
海藻Fucus sp. | Streptomyces sp.WR1L1S8 | [=2-hydroxy-5-((6-hydroxy- 4-oxo-4H-pyran-2-yl)methyl)-2- propylchroman-4-one] | 对革兰氏阳性致病性MRSA的选择性抑制活性,MIC值为6 μmol/L | [ |
褐藻Rosenvingea sp. | Pestalotia sp. | Pestalone | 对MRSA和VRE均显示出有效的抑菌活性,MIC 值分别为37 ng/mL和78 ng/mL | [ |
桂皮Cinnamomum kanehirae | Fusarium oxyporum | Beauvericin和(-)-4,6'-脱水氨基哌啶酮 Beauvericin and(-)-4,6'-anhydrooxysporidinone | 对MRSA有抑制活性,MIC值分别为3.125 μg/mL和 100 μg/mL | [ |
红树林植物Rhizophora apiculataz | Phomopsis sp.PSU-MA214 | Phomopsanthraquinone | 对金黄色葡萄球菌及MRSA良好的抑菌活性,MIC值为128 μg/mL和64 μg/mL | [ |
水稻Oryza sativa L. | Streptomyces sp. BCC72023 | Efomycin M、efomycin G和oxohygrolidin | 对K-1多药耐药菌株 Plasmodium falciparum良好的抑制活性(IC50值在1.40-5.23 μg/mL范围内),且化合物efomycin G2对普通蜡状芽孢杆菌也具有较强的抗菌活性,MIC值为3.13 μg/mL | [ |
Daphnopsis americana | 内生真菌CR115 Endophytic fungi CR115 | Guanacastepene A | 对耐药菌株MRSA和VRE显示出良好的抑制作用 | [ |
海洋红藻物种Laurencia | Penicillium chrysogenum QEN-24S | Conidiogenone B | 对MRSA具有显著的抗菌活性,MIC值为8 μg/mL | [ |
苔藓Everniastrum sp. | 内生真菌Ulocladium sp. Endophytic fungi Ulocladium sp. | Ophiobolin P和Ophiobolin T | 均对MRSA具有中等的抗菌活性,MIC值分别为31.3 μg/mL和15.6 μg/mL | [ |
红树林 Kandelia candel | Streptomyces sp. HKI0595 | Xiamycin | 对MRSA菌株和VRE菌株具有良好抑制作用,抑制范围分别为14 mm和12 mm | [ |
头花蓼Polygonum capitatum Buch.-Ham. ex D. Don | Alternaria tenuissima sp. PC-005 | 5-甲氧基格链孢酚 Ahernariol 5-O-methyl ether | 该化合物对肺炎克雷伯杆菌、普通变形杆菌、表皮葡萄球菌、大肠埃希菌、金黄色葡萄球菌、奇异变形杆菌、屎肠球菌等7种耐药微生物均具有良好的抑菌活性,MIC值分别为125、250、125、250、250、125和500 μg/mL | [ |
头花蓼Polygonum capitatum Buch.-Ham. ex D. Don | Gibberella intermedia | 镰刀菌酸 Fusaric acid | 对多重耐药大肠埃希菌、金黄色葡萄球菌和奇异变形杆菌具有抑制作用,MIC值分别为31.3、125、62.5 mg/mL | [ |
红树林Mangrove | Xylaria cubensis PSU-MA34 | Xylacinicacids A and B、2-hexylidene-3-methyl succinic acid 4-methylester、cytochalasin D以及2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione等 | 均对金黄色葡萄球菌ATCC 25923和MRSA有抑制作用,其中化合物2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione对金黄色葡萄球菌和MRSA菌株的MIC值为128 μg/ mL | [ |
Garcinia mangostana | Matryephaeria mamane PSU-M76 | Botryomaman,2,4-二甲氧基-6-戊基苯酚、(R)-(-)-mellein、primin、顺式4-羟基海藻油、反式-4-羟基海藻油和4,5二羟基-2-己烯酸 Botryomaman,2,4-dimethoxy-6-pentylphenol,(R)-(-)-mellein,primin,cis-4-hydroxymellein,trans-4-hydroxymellein and 4,5-dihydroxy-2-hexenoic acid | 所有化合物对MRSA菌株SK1均有抗菌活性。其中化合物 Primin表现出最佳抑制活性,MIC值为8 μg/mL | [ |
柽柳Tamarix | Streptomyces CLR304 | 304A(维吉尼霉素M1) | 对MRSE、MRSA、VISA、VRE有一定抗菌活性,MIC值均在1-4 μg/mL范围内 | [ |
Vochysia divergens | Aeromicrobium ponti LGMB491 | 1-acetyl-β-carboline、indole-3-carbaldehyde、3-(hydroxyacetyl)-indole、brevianamide F、cyclo-(L-Pro-L-Phe) | 对MSSA和MRSA均显示中等抑制活性 | [ |
药用植物Malay peninsula | 内生链霉菌Streptomyces SUK 25 | cyclo-(L-Val-L-Pro)、cyclo-(L-Leu-L-Pro)、cyclo-(L-Phe-L-Pro)、cyclo-(L-Val-L-Phe)和N-(7-hydroxy-6-methyl-octyl)-acetamide | 对MRSA菌株ATCC 43300有良好的抑制活性,其中cyclo-(L-Leu-L-Pro)对VRE菌株,具有抑制作用,MIC值为12.5 μg/mL | [ |
决明子Cinnamomum cassia Prels | S. cavourensis YBQ59 | 1-monolinolein、bafilomycin D、nonactic acid、daidzein、3’-hydroxydaidzein | 对MRSA和MRSE均显示出抗菌活性,1-monolinolein表现出最强的作用,最低抑菌浓度分别为8.5和14.6 μg/mL | [ |
[1] | World Health O. World health statistics overview 2019:monitoring health for the SDGs, sustainable development goals[R]. Geneva:World Health Organization, 2019. |
[2] | 刘昌孝. 当代抗生素发展的挑战与思考[J]. 中国抗生素杂志, 2017(1):1-12. |
Liu CX. Challenges and reflections on the development of contemporary antibiotics[J]. Chinese Journal of Antibiotics, 2017(1):1-12. | |
[3] | WHO. World leaders join forces to fight the growing crisis of antimicrobial resistance[EB/OL]. https://www.who.int/zh/news/item/20-11-2020-world-leaders-join-forces-to-fight-the-accelerating-crisis-of-antimicrobial-resistance , 2020. |
[4] | 黄磊, 高燕燕, 许才万, 等. 药用植物内生菌的多样性及其活性代谢产物功能研究进展[J]. 贵州林业科技, 2019(3):59-64. |
Huang L, Gao YY, Xu CW, et al. Research progress on the diversity of endophytes in medicinal plants and the functions of their active metabolites[J]. Guizhou Forestry Science and Technology, 2019(3):59-64. | |
[5] | 方珍娟, 张晓霞, 马立安. 植物内生菌研究进展[J]. 长江大学学报:自然科学版, 2018, 15(10):47-51. |
Fang ZJ, Zhang XX, Ma LA. Research progress of plant endophytes[J]. Journal of Yangtze University:Natural Science Edition, 2018, 15(10):47-51. | |
[6] | Mourad ES. New bioactive compounds from Verticillium alboatrum and Verticillium leptobactrum[J]. Australian Journal of Basic & Applied Sciences, 2010, 4(8):2166-2175. |
[7] |
Jouda JB, Mawabo IK, Notedji A, et al. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacteriumsmegmatis[J]. International Journal of Mycobacteriology, 2016, 5(2):192-196.
doi: 10.1016/j.ijmyco.2016.02.007 URL |
[8] | Yadav JP. Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia jambolanalam[J]. International Journal of Pharmacy and Pharmaceutical ences, 2014, 6(5):208-211. |
[9] | 唐曼娟, 杨祚升, 蔡恒玲. 粪肠球菌Ⅱ型拓扑异构酶基因突变与耐氟喹诺酮类药物关系的研究[J]. 现代检验医学杂志, 2010, 25(2):34-38. |
Tang MJ, Yang ZS, Cai HL. The relationship between the mutation of Enterococcus faecalis type Ⅱ topoisomerase gene and fluoroquinolones resistance[J]. Journal of Modern Laboratory Medicine, 2010, 25(2):34-38. | |
[10] | 程长伟. Erm甲基化体系的建立及耐药菌种中ErmB突变体的甲基化活性[D]. 武汉:华中农业大学, 2016. |
Cheng CW. Establishment of Erm methylation system and methylation activity of ErmB mutants in drug-resistant strains[D]. Wuhan:Huazhong Agricultural University, 2016. | |
[11] | 李雪寒, 李一荣. 耐甲氧西林金黄色葡萄球菌耐药机制及检测方法研究进展[J]. 国际检验医学杂志, 2019(5):586-589. |
Li XH, Li YR. Research progress on drug resistance mechanism and detection methods of methicillin-resistant Staphylococcus aure-us[J]. International Journal of Laboratory Medicine, 2019(5):586-589. | |
[12] | 杨玲, 王燕, 贾立敏, 等. 细菌对抗生素产生耐药性的研究进展[J]. 中国动物保健, 2018, 20(12):19-20. |
Yang L, Wang Y, Jia LM, et al. Research progress of bacterial resistance to antibiotics[J]. China Animal Health, 2018, 20(12):19-20. | |
[13] |
Chang CY, Jen LH, Li BR, et al. A novel metallo-β-Lactamase involved in the ampicillin resistance of Streptococcus pneumoniae ATCC 49136 strain[J]. PLoS One, 2016, 11(5):e0155905-e0155918.
doi: 10.1371/journal.pone.0155905 URL |
[14] | 苏静静, 蒋亚梅, 温洪宇. 细菌对四类土壤常见抗生素的降解机制[J]. 黑龙江农业科学, 2016(12):52-54. |
Su JJ, Jiang YM, Wen HY. Degradation mechanism of four types of common soil antibiotics by bacteria[J]. Heilongjiang Agricultural Sciences, 2016(12):52-54. | |
[15] |
Paula B, Sara HA, Jose RC, et al. Bacterial multidrug efflux pumps:Much more than antibiotic resistance determinants[J]. Microorganisms, 2016, 4(1):1-19.
doi: 10.3390/microorganisms4010001 URL |
[16] | 吴伟清, 张彦鹏, 李卓成. 碳青霉烯类耐药鲍曼不动杆菌外排泵耐药机制研究[J]. 广东医学, 2017, 38(4):519-521. |
Wu WQ, Zhang YP, Li ZC. Study on the resistance mechanism of carbapenem-resistant Acinetobacter baumannii efflux pump[J]. Guangdong Medicine, 2017, 38(4):519-521. | |
[17] | 赵娜, 王继春. 结核分枝杆菌耐药机制的研究进展[J]. 中国病原生物学杂志, 2016, 11(2):181-184. |
Zhao N, Wang JC. Research progress on the drug resistance mechanism of Mycobacterium tuberculosis[J]. Chinese Journal of Pathogen Biology, 2016, 11(2):181-184. | |
[18] | 李纪兵, 陆春. 体内生物膜研究进展[J]. 微生物学杂志, 2012, 32(5):83-87. |
Li JB, Lu C. Research progress of biofilm in vivo[J]. Journal of Microbiology, 2012, 32(5):83-87. | |
[19] |
Singh AK, Yadav S, Chauhan BS, et al. Classification of clinical isolates of Klebsiella pneumoniae based on their in vitro biofilm forming capabilities and elucidation of the biofilm matrix chemistry with special reference to the protein content[J]. Front Microbiol, 2019, 10:669-669.
doi: 10.3389/fmicb.2019.00669 URL |
[20] | 赵芝静, 刘心伟, 张小倩, 等. 铜绿假单胞菌生物被膜构成成分藻酸盐的相关研究进展[J]. 中国医药, 2020, 15(11):1814-1816. |
Zhao ZJ, Liu XW, Zhang XQ, et al. Research progress on alginate, a constituent of Pseudomonas aeruginosa biofilm[J]. Chinese Medicine, 2020, 15(11):1814-1816. | |
[21] | 刘姝灵, 向延根, 马小华, 等. 肺炎克雷伯菌生物膜相关研究进展[J]. 标记免疫分析与临床, 2020, 27(3):533-536. |
Liu SL, Xiang YG, Ma XH, et al. Research progress on Klebsiella pneumoniae biofilm[J]. Labeled Immunoassays and Clinics, 2020, 27(3):533-536. | |
[22] | 狄冠麟, 田向东, 杨爽, 等. 生物被膜在泛耐药菌中的作用机制与治疗研究进展[J]. 黑龙江中医药, 2014, 43(2):71-73. |
Di GL, Tian XD, Yang S, et al. Research progress in the mechanism and treatment of biofilms in pan-resistant bacteria[J]. Heilongjiang Traditional Chinese Medicine, 2014, 43(2):71-73. | |
[23] | 刘春明. 铜绿假单胞菌耐药机制的研究进展[J]. 中华医院感染学杂志, 2011, 21(21):4634-4637. |
Liu CM. Research progress on the drug resistance mechanism of Pseudomonas aeruginosa[J]. Chinese Journal of Hospital Infection, 2011, 21(21):4634-4637. | |
[24] | 梁宏洁, 闫玉兰. 铜绿假单胞菌耐药机制的研究进展[J]. 微创医学, 2014, 9(2):80-83. |
Liang HJ, Yan YL. Research progress on the drug resistance mechanism of Pseudomonas aeruginosa[J]. Minimally Invasive Medicine, 2014, 9(2):80-83. | |
[25] | 刘晓瑜, 马玉超. 抗耐药细菌药用植物内生菌的筛选与鉴定[J]. 生物技术通报, 2015, 31(3):154-160. |
Liu XY, Ma YC. Screening and identification of medicinal plant endophytes against drug-resistant bacteria[J]. Biotechnology Bulletin, 2015, 31(3):154-160. | |
[26] | 李园园, 彭廷文, 吕玉红, 等. 贵州5种药用植物内生菌的分离及次级代谢产物研究[J]. 遵义医学院学报, 2013, 36(5):432-436. |
Li YY, Peng TW, Lü YH, et al. Isolation of endophytic bacteria from five medicinal plants in Guizhou and study on secondary metabolites[J]. Journal of Zunyi Medical College, 2013, 36(5):432-436. | |
[27] | 张溪, 弓磊. 抗菌肽抗菌机制及研究热点[J]. 中国组织工程研究, 2020, 24(10):1634-1640. |
Zhang X, Gong L. Antibacterial mechanism and research hotspots of antibacterial peptides[J]. Chinese Tissue Engineering Research, 2020, 24(10):1634-1640. | |
[28] | 李云香, 姚倩, 任玫, 等. 抗菌肽作用机制研究进展[J]. 动物医学进展, 2019, 40(9):98-103. |
Li YX, Yao Q, Ren M, et al. Research progress in the mechanism of antimicrobial peptides[J]. Adv Vet Med, 2019, 40(9):98-103. | |
[29] | 郭文杰, 罗鹏, 荆许恩, 等. 抗菌肽对耐甲氧西林金黄色葡萄球菌的抗菌机制研究进展[J]. 中国药房, 2017, 28(23):3302-3305. |
Guo WJ, Luo P, Jing XE, et al. Research progress on antibacterial mechanism of antibacterial peptides against methicillin-resistant Staphylococcus aureus[J]. China Pharmacy, 2017, 28(23):3302-3305. | |
[30] |
Sheng Q, Ke X, Jiang JH, et al. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria[J]. Applied Microbiology and Biotechnology, 2011, 89(3):457-473.
doi: 10.1007/s00253-010-2923-6 pmid: 20941490 |
[31] |
Castillo UF, Strobel GA, Ford EJ, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans[J]. Microbiology, 2002, 148(9):2675-2685.
doi: 10.1099/00221287-148-9-2675 URL |
[32] | Castillo UF, Strobel GA, Kirby M, et al. Munumbicins E-4 and E-5:novel broad-spectrum antibiotics from Streptomyces NRRL 3052[J]. FEMS Microbiology Letters, 2010(2):296-300. |
[33] | Uvidelio C, Harper JK, Strobel GA, et al. Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia[J]. FEMS Microbiology Letters, 2010(2):183-190. |
[34] |
Singh MP, Janso JE, Brady SF. Cytoskyrins and cytosporones produced by Cytospora sp. CR200:Taxonomy, fermentation and biological activities[J]. Marine Drugs, 2007, 5(3):71-84.
pmid: 18463719 |
[35] | 崔海滨, 梅文莉, 缪承杜, 等. 红树植物卤蕨内生真菌Penicillium sp. 0935030中的抗菌活性成分研究[J]. 中国抗生素杂志, 2008, 33(7):407-410. |
Cui HB, Mei WL, Miao CD, et al. Study on the antibacterial active ingredients of the endophytic fungus Penicillium sp. 0935030 in the mangrove plant Halternium sp.[J]. Chinese Journal of Antibiotics, 2008, 33(7):407-410. | |
[36] | 卢轩, 靳元春, 冯宝民. 具有抗菌活性的植物内生微生物代谢产物研究进展[J]. 沈阳药科大学学报, 2015, 32(11):892-899. |
Lu X, Jin YC, Feng BM. Research progress in plant endophytic microbial metabolites with antibacterial activity[J]. Journal of Shenyang Pharmaceutical University, 2015, 32(11):892-899. | |
[37] | Senadeera SPD, Wiyakrutta S, Mahidol C, et al. A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp.[J]. Organic & Biomolecular Chemistry, 2012, 10(35):7220-7226. |
[38] | Shang Z, Li XM, Li CS, et al. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media[J]. Chemistry & Biodiversity, 2012, 9(7):1338-1348. |
[39] |
Djinni I, Defant A, Kecha M, et al. Antibacterial polyketides from the marine alga-derived endophitic Streptomyces sundarbansensis:a study on hydroxypyrone tautomerism[J]. Marine Drugs, 2013, 11(1):124-135.
doi: 10.3390/md11010124 URL |
[40] | Cueto M, Jensen PR, Kauffman C, et al. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge[J]. American Chemical Society, 2001, 64(11):1444-1446. |
[41] |
Wang QX, Li SF, Zhao F, et al. Chemical constituents from endophytic fungus Fusarium oxysporum[J]. Fitoterapia, 2011, 82(5):777-781.
doi: 10.1016/j.fitote.2011.04.002 URL |
[42] |
Klaiklay S, Rukachaisirikul V, Phongpaichit S, et al. Anthraquinone derivatives from the mangrove-derived fungus Phomopsis sp. PSU-MA214[J]. Phytochemistry Letters, 2012, 5(4):738-742.
doi: 10.1016/j.phytol.2012.08.003 URL |
[43] |
Supong K, Thawai C, Choowong W, et al. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice(Oryza sativa L.)[J]. Research in Microbiology, 2016, 167(4):290-298.
doi: 10.1016/j.resmic.2016.01.004 URL |
[44] |
Singh MP, Janso JE, Luckman SW, et al. Biological activity of guanacastepene, a novel diterpenoid antibiotic produced by an unidentified fungus CR115[J]. Journal of Antibiotics, 2000, 53(3):256-261.
pmid: 10819296 |
[45] | Gao SS, Li XM, Zhang Y, et al. Conidiogenones H and I, Two new diterpenes of cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S[J]. Chemistry & Biodiversity, 2011, 8(9):1748-1753. |
[46] |
Wang QX, Bao L, Yang XL, et al. Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp.[J]. Fitoterapia, 2013, 90:220-227.
doi: 10.1016/j.fitote.2013.08.002 URL |
[47] | Ding L, Maier A, Fiebig HH, et al. A family of multicyclic indolosesquiterpenes from a bacterial endophyte[J]. Organic & Biomolecular Chemistry, 2011, 9(11):4029-4031. |
[48] | 刘俊, 张春雷, 张青艳, 等. 内生真菌Alternaria tenuissima PC-005抗耐药菌活性成分研究[J]. 中南药学, 2018, 16(6):741-744. |
Liu J, Zhang CL, Zhang QY, et al. Study on the active ingredients of endophytic fungus Alternaria tenuissima PC-005 against drug-resistant bacteria[J]. Zhongnan Pharmacy, 2018, 16(6):741-744. | |
[49] | 刘俊, 张青艳, 杨斐玉, 等. 头花蓼内生真菌Gibberella intermedia抗多重耐药菌活性成分及其逆转细菌耐药性作用分析[J]. 中国实验方剂学杂志, 2018, 24(7):33-37. |
Liu J, Zhang QY, Yang FY, et al. Anti-multidrug-resistant bacteria active ingredients of the endophytic fungus Gibberella intermedia from Polygonum capitatum and analysis of their effects on reversing bacterial resistance[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(7):33-37. | |
[50] |
Klaiklay S, Rukachaisirikul V, Sukpondma Y, et al. Metabolites from the mangrove-derived fungus Xylaria cubensis PSU-MA34[J]. Archives of Pharmacal Research, 2012, 35(7):1127-1131.
doi: 10.1007/s12272-012-0701-y URL |
[51] | Phongpaichit S, Pongcharoen W, Sakayaroj J, et al. A New dihydr-obenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(9):1404-1405. |
[52] | 刘少伟, 李舟, 胡辛欣, 等. 柽柳内生链霉菌CLR304抗MRSA次级代谢产物304A的研究[J]. 中国医药生物技术, 2015, 10(6):514-521. |
Liu SW, Li Z, Hu XX, et al. Study on 304A produced by an endophytic Streptomyces CLR304 from Tamarix with anti-MRSA bioactivity[J]. China Medical Biotechnology, 2015, 10(6):514-521. | |
[53] | Gos FMWR, Savi DC, Shaaban KA, et al. Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens(Pantanal, Brazil)[J]. Frontiers in Microbiology, 2017, 8(8):1-17. |
[54] |
Alshaibani M, Zin MM, Jalil J, et al. Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities[J]. Journal of Microbiology and Biotechnology, 2017, 27(7):1249-1256.
doi: 10.4014/jmb.1608.08032 pmid: 28535606 |
[55] |
Thi HN, Tien ND, Quang NH, et al. Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia prels in Yen Bai province of vietnam[J]. Current Microbiology, 2018, 75(4):1-9.
doi: 10.1007/s00284-017-1332-9 URL |
[1] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[2] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[3] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[4] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[5] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[6] | Wei Zhiwen,Sun Yong, Wang Fei. The Production of Phenolic Compounds of Inonotus obliquus by Fungal Elicitor Introducing and Its Study of Biochemical Mechanism [J]. Biotechnology Bulletin, 2014, 0(9): 136-141. |
[7] | Song Kai, Hu Jie, Lin Wenhan, Ji Yubin,. Studies on Diversity of Sponges-associated Fungi and Their Secondary Metabolites [J]. Biotechnology Bulletin, 2014, 0(4): 36-42. |
[8] | Dai Fangping, Li Shiweng. Progress on the Secondary Metabolites and Applications of Streptomyces [J]. Biotechnology Bulletin, 2014, 0(3): 30-35. |
[9] | Zhao Tingfeng, Gong Guoli. Myxobacteria :Natural Pharmaceutical Factories [J]. Biotechnology Bulletin, 2014, 0(12): 40-46. |
[10] | Huang Yan, Hu Jianwei, Zhu Honghui, . Effects of Co-culture with Helper Bacteria on the Secondary Metabolites of Myxococcus fulvus [J]. Biotechnology Bulletin, 2013, 0(5): 184-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||