Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 261-271.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1293
Previous Articles Next Articles
XU Jin1(), LI Tao1,2,3, LI Chu-lin2, ZHU Shun-ni1, WANG Zhong-ming1(), XIANG Wen-zhou2,3()
Received:
2021-10-13
Online:
2022-06-26
Published:
2022-07-11
Contact:
WANG Zhong-ming,XIANG Wen-zhou
E-mail:xujin@ms.giec.ac.cn;wangzm@ms.giec.ac.cn;xwz@scsio.ac.cn
XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp.[J]. Biotechnology Bulletin, 2022, 38(6): 261-271.
Fig.1 Cell morphology and growth characteristics of Eustigmatos sp. JHsu-01 cultured at different temperatures A:Biomass. B:Cell density. C:Cell morphology on day 12(30℃). D:Cell morphology on day 12(15℃)
Fig.2 Effects of temperature on the effective photochemical quantum yield of PSII(A)and quantum yield of the light-induced non-photochemical fluorescence quenching of PSII(B)of Eustigmatos sp. JHsu-01
Fig.5 Distribution of EPA in neutral lipids,glycolipids and phospholipids A:EPA content at 30℃. B:EPA content at 15℃. C:The proportion of EPA in different lipid fractions at 30℃. D:The proportion of EPA in different lipid fractions at 15℃
Fig.7 Changes of temperature on the fatty acid metabolic pathways of Eustigmatos sp. JHsu-01 DHAP:dihydroxyacetone phosphate;G3P:glycerol-3-phosphate;DG:diacylglycerol;TG:triacylglycerol;PG:phosphatidylglycerol;PI:phosphatidylinositol;PC:phosphatidylcholine; PE:phosphatidylethanolamine;PS:phosphatidylserine;SQDG:sulfoquinovosyldiacylglycerol; MGDG:monogalactosyldiacylglycerol;DGDG:digalactosyldiacylglycerol;CDP-DG:CDP-diglyceride;PA:diacylglycerol phosphate;LPA:lysophosphatidic acid. DHAP:Dihydroxyacetone phosphate(The control group is 30℃,the treatment group is 15℃;red is up-regulation,and green is down-regulation)
基因功能Gene function | 简写Abbreviation | 变化情况Changes | |
---|---|---|---|
脂肪酸合成 Fatty acid synthesis | 乙酰辅酶A羧化酶羧基转移酶Acetyl-CoA carboxylase carboxyl transferase | accA | 上调 Up |
3-酮酰基-ACP合成酶 3-oxoacyl-ACP synthase | fabF | 上调 Up | |
3-酮酰基-ACP还原酶 3-oxoacyl-ACP reductase | fabG | 上调 Up | |
3-酮酰基-ACP脱水酶 3-hydroxyacyl- ACP dehydratase | fabZ | 上调 Up | |
烯酯酰ACP还原酶I Enoyl-ACP reductase I | fabI | 上调 Up | |
脂肪酸去饱和 Fatty acid desaturation | delta-5脂肪酸去饱和酶 Delta-5 fatty acid desaturase | Δ5 Des | 上调 Up |
delta-6脂肪酸去饱和酶 Delta-6 fatty acid desaturase | Δ6 Des | 上调 Up | |
delta-15脂肪酸去饱和酶 Delta-15 fatty acid desaturase | Δ15 Des | 上调 Up | |
三酰甘油合成 Triacylglycerol synthesis | 3-磷酸甘油酰基转移酶 Glycerol-3-phosphate O-acyltransferase | GPAT | 上调 Up |
甘油磷酸脱氢酶 Glycerophosphatedehydrogenase | GPDH | 无变化 No | |
1-酰基甘油-3-磷酸酰基转移酶 1-acyl-glycerol-3-phosphate acyltransferase | plsC | 上调 Up | |
磷脂酸磷酸酶 Phosphatidate phosphatase | PLPP | 上调 Up | |
二酰基甘油酰基转移酶 Diacylglycerol O-acyltransferase | DGAT | 上调 Up | |
硫脂合成 Sulfolipid synthesis | 硫代异鼠基转移酶 Sulfoquinovosyltransferase | SQD2 | 上调 Up |
UDP-硫代异鼠糖合酶 UDP-sulfoquinovose synthase | SQD1 | 上调 Up | |
糖脂合成 Glycolipid synthesis | 二酰基甘油3-β-半乳糖基转移酶 1,2-diacylglycerol 3-beta-galactosyltransferase | MGD | 上调 Up |
二半乳糖二酰基甘油合酶 Digalactosyldiacylglycerol synthase | DGD | 上调 Up | |
磷脂合成 Phospholipid synthesis | 磷脂酰胞苷转移酶 Phosphatidate cytidylyltransferase | CDS1 | 无变化 No |
乙醇胺磷酸转移酶 Ethanolaminephosphotransferase | EPT1 | 下调 Down | |
二酰基甘油胆碱磷酸转移酶 Diacylglycerol cholinephosphotransferase | CPT1 | 下调 Down | |
磷脂酰丝氨酸合酶2 phosphatidylserine synthase 2 | PTDSS2 | 下调 Down | |
CDP-二酰基甘油-甘油-3-磷酸磷脂酰转移酶 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase | pgsA | 无变化 No | |
磷脂酰甘油磷酸酶 Phosphatidylglycerophosphatase | GEP4 | 无变化 No | |
CDP-二酰基甘油-肌醇3-磷脂酰转移酶 CDP-diacylglycerol-inositol 3-phosphatidyltransferase | CDIPT | 上调 Up |
Table 1 Expression changes of genes in lipid and fatty acid biosynthesis pathways
基因功能Gene function | 简写Abbreviation | 变化情况Changes | |
---|---|---|---|
脂肪酸合成 Fatty acid synthesis | 乙酰辅酶A羧化酶羧基转移酶Acetyl-CoA carboxylase carboxyl transferase | accA | 上调 Up |
3-酮酰基-ACP合成酶 3-oxoacyl-ACP synthase | fabF | 上调 Up | |
3-酮酰基-ACP还原酶 3-oxoacyl-ACP reductase | fabG | 上调 Up | |
3-酮酰基-ACP脱水酶 3-hydroxyacyl- ACP dehydratase | fabZ | 上调 Up | |
烯酯酰ACP还原酶I Enoyl-ACP reductase I | fabI | 上调 Up | |
脂肪酸去饱和 Fatty acid desaturation | delta-5脂肪酸去饱和酶 Delta-5 fatty acid desaturase | Δ5 Des | 上调 Up |
delta-6脂肪酸去饱和酶 Delta-6 fatty acid desaturase | Δ6 Des | 上调 Up | |
delta-15脂肪酸去饱和酶 Delta-15 fatty acid desaturase | Δ15 Des | 上调 Up | |
三酰甘油合成 Triacylglycerol synthesis | 3-磷酸甘油酰基转移酶 Glycerol-3-phosphate O-acyltransferase | GPAT | 上调 Up |
甘油磷酸脱氢酶 Glycerophosphatedehydrogenase | GPDH | 无变化 No | |
1-酰基甘油-3-磷酸酰基转移酶 1-acyl-glycerol-3-phosphate acyltransferase | plsC | 上调 Up | |
磷脂酸磷酸酶 Phosphatidate phosphatase | PLPP | 上调 Up | |
二酰基甘油酰基转移酶 Diacylglycerol O-acyltransferase | DGAT | 上调 Up | |
硫脂合成 Sulfolipid synthesis | 硫代异鼠基转移酶 Sulfoquinovosyltransferase | SQD2 | 上调 Up |
UDP-硫代异鼠糖合酶 UDP-sulfoquinovose synthase | SQD1 | 上调 Up | |
糖脂合成 Glycolipid synthesis | 二酰基甘油3-β-半乳糖基转移酶 1,2-diacylglycerol 3-beta-galactosyltransferase | MGD | 上调 Up |
二半乳糖二酰基甘油合酶 Digalactosyldiacylglycerol synthase | DGD | 上调 Up | |
磷脂合成 Phospholipid synthesis | 磷脂酰胞苷转移酶 Phosphatidate cytidylyltransferase | CDS1 | 无变化 No |
乙醇胺磷酸转移酶 Ethanolaminephosphotransferase | EPT1 | 下调 Down | |
二酰基甘油胆碱磷酸转移酶 Diacylglycerol cholinephosphotransferase | CPT1 | 下调 Down | |
磷脂酰丝氨酸合酶2 phosphatidylserine synthase 2 | PTDSS2 | 下调 Down | |
CDP-二酰基甘油-甘油-3-磷酸磷脂酰转移酶 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase | pgsA | 无变化 No | |
磷脂酰甘油磷酸酶 Phosphatidylglycerophosphatase | GEP4 | 无变化 No | |
CDP-二酰基甘油-肌醇3-磷脂酰转移酶 CDP-diacylglycerol-inositol 3-phosphatidyltransferase | CDIPT | 上调 Up |
[1] |
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for Omega-3 fatty acids production[J]. Curr Opin Biotechnol, 2014, 26:14-18.
doi: 10.1016/j.copbio.2013.08.003 URL |
[2] | 王盛林, 刘平怀, 曹猛. 微藻营养价值及微藻饵料的开发利用[J]. 食品工业, 2019, 40(7):275-279. |
Wang SL, Liu PH, Cao M. Development and utilization of nutritional value and feeds of microalgae[J]. Food Ind, 2019, 40(7):275-279. | |
[3] |
Reis A, Gouveia L, Veloso V, et al. Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor[J]. Bioresour Technol, 1996, 55(1):83-88.
doi: 10.1016/0960-8524(95)00157-3 URL |
[4] |
Li S, Xu JL, Chen J, et al. The major lipid changes of some important diet microalgae during the entire growth phase[J]. Aquaculture, 2014, 428/429:104-110.
doi: 10.1016/j.aquaculture.2014.02.032 URL |
[5] |
Khozin-Goldberg I, Yu HZ, Adlerstein D, et al. Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids[J]. Lipids, 2000, 35(8):881-889.
pmid: 10984111 |
[6] |
Khozin-Goldberg I, Iskandarov U, Cohen Z. LC-PUFA from photosynthetic microalgae:occurrence, biosynthesis, and prospects in biotechnology[J]. Appl Microbiol Biotechnol, 2011, 91(4):905-915.
doi: 10.1007/s00253-011-3441-x pmid: 21720821 |
[7] | Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism[J]. Arabidopsis Book, 2013, 11:e0161. |
[8] |
Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae[J]. Prog Lipid Res, 2006, 45(2):160-186.
pmid: 16492482 |
[9] | Huang LD, Gao BY, Wang FF, et al. The complete mitochondrial genome of an oleaginous microalga Vischeria stellata strain SAG 33. 83(Eustigmatophyceae)[J]. Mitochondrial DNA B, 2019, 4(1):301-302. |
[10] | Xu J, Li T, Li CL, et al. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01(Eustigmatophyceae)[J]. Algal Res, 2020, 48:101910. |
[11] |
李涛, 赵伟, 杨冰洁, 等. 一株耐盐真眼点藻(Eustigmatos sp. )的户外培养及油脂提取工艺研究[J]. 生物技术通报, 2020, 36(7):130-138.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1050 |
Li T, Zhao W, Yang BJ, et al. Outdoor cultivation oil extraction of the salt-tolerant microalga, Eustigmatos sp[J]. Biotechnol Bull, 2020, 36(7):130-138. | |
[12] | Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophys Acta, 2005, 1738(1/2/3):63-71. |
[13] |
李涛, 许瑾, 吴华莲, 等. 不同氮浓度对一株产油绿球藻生长、脂类积累及脂肪酸分布的影响[J]. 生物技术通报, 2018, 34(5):154-162.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1134 |
Li T, Xu J, Wu HL, et al. Effects of nitrogen concentration on the growth, lipid accumulation and fatty acids distribution of oleaginous Chlorococcum sp[J]. Biotechnol Bull, 2018, 34(5):154-162. | |
[14] | 赵婷, 韩笑天, 詹天荣, 等. 温度对四种产油微藻生长和油脂特性的影响[J]. 海洋与湖沼, 2016, 47(6):1140-1148. |
Zhao T, Han XT, Zhan TR, et al. Effect of temperature on growth and lipid properties of four oil-producing microalgae[J]. Oceanol et Limnol Sin, 2016, 47(6):1140-1148. | |
[15] |
Chaisutyakorn P, Praiboon J, Kaewsuralikhit C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production[J]. J Appl Phycol, 2018, 30(1):37-45.
doi: 10.1007/s10811-017-1186-3 URL |
[16] | 高保燕, 张成武, 万凌琳, 等. 真眼点藻纲的系统分类、生物学特性及应用研究[J]. 水生生物学报, 2014, 38(5):945-956. |
Gao BY, Zhang CW, Wan LL, et al. Systematics, biological characteristics and potential application of eustigmatophyceae[J]. Acta Hydrobiol Sin, 2014, 38(5):945-956. | |
[17] |
Gao BY, Xia S, Lei XQ, et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem[J]. J Appl Phycol, 2018, 30(1):215-229.
doi: 10.1007/s10811-017-1180-9 URL |
[18] | Spolaore P, Joannis-Cassan C, Duran EL, et al. Optimization of Nannochloropsis oculata growth using the response surface method[J]. J Chem Technol Biotechnol, 2006, 81(6):1049-1056. |
[19] | Carneiro M, Cicchi B, Maia IB, et al. Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors[J]. Algal Res, 2020, 49:101923. |
[20] |
Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant J, 2008, 54(4):621-639.
doi: 10.1111/j.1365-313X.2008.03492.x URL |
[21] |
Ördög V, Stirk WA, Bálint P, et al. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains[J]. Algal Res, 2016, 16:141-149.
doi: 10.1016/j.algal.2016.03.001 URL |
[22] |
Venkata Subhash G, Rohit MV, Devi MP, et al. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater[J]. Bioresour Technol, 2014, 169:789-793.
doi: 10.1016/j.biortech.2014.07.019 URL |
[23] |
Renaud SM, Thinh LV, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures[J]. Aquaculture, 2002, 211(1/2/3/4):195-214.
doi: 10.1016/S0044-8486(01)00875-4 URL |
[24] | 叶丽, 蒋霞敏, 毛欣欣, 等. 温、光、盐对三角褐指藻紫外诱变株生长、总脂及脂肪酸的影响[J]. 生态学杂志, 2015, 34(2):454-462. |
Ye L, Jiang XM, Mao XX, et al. Effects of temperature, light intensity and salinity on the growth, total lipid and fatty acid of Phaeo-dactylum tricornutum mutant[J]. Chin J Ecol, 2015, 34(2):454-462. | |
[25] |
Boelen P, van Dijk R, Sinninghe Damsté JS, et al. On the potential application of polar and temperate marine microalgae for EPA and DHA production[J]. AMB Express, 2013, 3(1):26.
doi: 10.1186/2191-0855-3-26 pmid: 23673135 |
[26] |
Murata N, Los DA. Membrane fluidity and temperature perception[J]. Plant Physiol, 1997, 115(3):875-879.
pmid: 12223851 |
[27] |
Yoon K, Han DX, Li YT, et al. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii[J]. Plant Cell, 2012, 24(9):3708-3724.
doi: 10.1105/tpc.112.100701 URL |
[28] | 王帅. 富油微藻筛选及球等鞭金藻(Isochrysis galbana)脂肪酸去饱和酶基因的克隆与功能研究[D]. 青岛: 中国海洋大学, 2015. |
Wang S. Screening of oil-rich microalgae and the identification, characterization, and expression of fatty acid desaturase genes from Isochrysis galbana[D]. Qingdao: Ocean University of China, 2015. | |
[29] | 王婷, 赵培, 李楠, 等. 低温诱导球等鞭金藻3011脂肪酸去饱和酶基因片段的筛选及mRNA表达分析[J]. 食品科学, 2016, 37(5):132-137. |
Wang T, Zhao P, Li N, et al. M RNA expression analysis and screening of fatty acid desaturase gene in Isochrysis galbana 3011 under low-temperature induction[J]. Food Sci, 2016, 37(5):132-137.
doi: 10.1111/j.1365-2621.1972.tb03402.x URL |
|
[30] |
Xin Y, Shen C, She Y, et al. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae[J]. Mol Plant, 2019, 12(4):474-488.
doi: S1674-2052(18)30374-5 pmid: 30580039 |
[1] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[2] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[3] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[4] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[5] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[6] | ZHOU Wen-han, ZHENG Kang-ning, LI Yong-min. Stellera chamaejasme L. Inhibiting Cell Proliferation by Reducing YAP1 Expression in Hepatocellular Carcinoma [J]. Biotechnology Bulletin, 2023, 39(7): 316-324. |
[7] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[8] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[9] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[10] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[11] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[12] | SUN Ya-ling, LI Rui-ping, WANG Zhen-bao, ZHANG Shu, LIU Bing-jiang, HUO Yu-meng. A New Method for Onion Seed Disinfection and Aseptic Seedling Culture [J]. Biotechnology Bulletin, 2023, 39(4): 212-220. |
[13] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[14] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[15] | JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(3): 232-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||