Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 136-145.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1042
Previous Articles Next Articles
WEN Ya-ya1,2,3,4(), SONG Li1,2,3,4, WANG Qiao-ju1,2,3,4, PAN Zhi-ming1,2,3,4(), JIAO Xin-an1,2,3,4
Received:
2021-08-16
Online:
2022-07-26
Published:
2022-08-09
Contact:
PAN Zhi-ming
E-mail:yaya__wen@163.com;zmpan@yzu.edu.cn
WEN Ya-ya, SONG Li, WANG Qiao-ju, PAN Zhi-ming, JIAO Xin-an. Research Status and Challenges of COVID-19 Vaccine[J]. Biotechnology Bulletin, 2022, 38(7): 136-145.
疫苗名称 Vaccine | 类型 Type | 研发单位 Developer | 上市时间 Time to market | 总体保护率 Overall protective efficacy/% | 中/重症保护率 Efficacy against moderate to severe diease/% | 不良反应 Adverse reactions |
---|---|---|---|---|---|---|
BBIBP-CorV | 灭活苗 | 北京生物制品研究所 中国疾病预防控制中心 | 2020.12.30 | 79.34 | 100 | 注射部位疼痛红肿、疲劳、发热等,症状轻微。无与疫苗相关的严重不良事件 |
新冠肺炎灭活疫苗 | 灭活苗 | 武汉生物制品研究所 武汉病毒研究所 | 2021.02.25 | 72.51 | 100 | |
Ad5-nCoV | Ad5腺病毒载体疫苗 | 康希诺生物 军事医学科学院 | 2021.02.25 | 57.50 | 91.70 | |
CoronaVac | 灭活苗 | 北京科兴中维 | 2021.02.05 | 67.00 | 89.00 | |
ZF2001 | 二聚体亚单位 S疫苗 | 中国科学院微生物研究所、智飞生物 | 2021.03.10 | 81.43 | 100 |
Table 1 Overview of COVID-19 vaccines licensed in China
疫苗名称 Vaccine | 类型 Type | 研发单位 Developer | 上市时间 Time to market | 总体保护率 Overall protective efficacy/% | 中/重症保护率 Efficacy against moderate to severe diease/% | 不良反应 Adverse reactions |
---|---|---|---|---|---|---|
BBIBP-CorV | 灭活苗 | 北京生物制品研究所 中国疾病预防控制中心 | 2020.12.30 | 79.34 | 100 | 注射部位疼痛红肿、疲劳、发热等,症状轻微。无与疫苗相关的严重不良事件 |
新冠肺炎灭活疫苗 | 灭活苗 | 武汉生物制品研究所 武汉病毒研究所 | 2021.02.25 | 72.51 | 100 | |
Ad5-nCoV | Ad5腺病毒载体疫苗 | 康希诺生物 军事医学科学院 | 2021.02.25 | 57.50 | 91.70 | |
CoronaVac | 灭活苗 | 北京科兴中维 | 2021.02.05 | 67.00 | 89.00 | |
ZF2001 | 二聚体亚单位 S疫苗 | 中国科学院微生物研究所、智飞生物 | 2021.03.10 | 81.43 | 100 |
疫苗名称 Vaccine | 类型 Type | 抗原 Target antigen | 研发单位 Developer | 上市时间 Time to market | 总体保护率 Overall protective efficacy/% | 中/重症保护率 Efficacy against moderate to severe diease/% | 不良反应 Adverse reactions |
---|---|---|---|---|---|---|---|
BNT162b2 | mRNA 疫苗 | 3LNP-mRNAs | 美国辉瑞 德国BioTech 上海复星医药 | 2020.12.11 | 95.0 | / | 接种疫苗后心肌炎和心包炎风险增加 |
mRNA-1273 | mRNA 疫苗 | S-2P | 美国Moderna 美国国家过敏和传染病研究所 | 2020.12.18 | 94.1 | 100 | |
Sputnik V | 非复制型腺病毒载体疫苗 | rAd26-S +rAd5-S | 俄罗斯加马列亚流行病与微生物学国家研究中心 | 2020.08.11 | 91.6 | 100 | 注射部位疼痛红肿、疲劳、发热、肌肉疼痛等 |
Covaxin | 灭活苗 | / | 印度巴拉特生物技术 | 2021.01.03 | 80.6 | / | |
ChAdOx1 nCoV-19 | 非复制型腺病毒载体疫苗 | ChAdOx-S | 英国牛津大学阿斯利康公司 | 2020.12.30 | 76.0 | 100 | 两种疫苗接种后均出现罕见血栓案例。强生疫苗接种后格林-巴利综合征风险增加 |
Ad26.COV2.S | 非复制型腺病毒载体疫苗 | Ad26-S | 美国强生公司 | 2021.02.27 | / | 66.1 / 85.4 |
Table 2 Overview of COVID-19 vaccines licensed abroad
疫苗名称 Vaccine | 类型 Type | 抗原 Target antigen | 研发单位 Developer | 上市时间 Time to market | 总体保护率 Overall protective efficacy/% | 中/重症保护率 Efficacy against moderate to severe diease/% | 不良反应 Adverse reactions |
---|---|---|---|---|---|---|---|
BNT162b2 | mRNA 疫苗 | 3LNP-mRNAs | 美国辉瑞 德国BioTech 上海复星医药 | 2020.12.11 | 95.0 | / | 接种疫苗后心肌炎和心包炎风险增加 |
mRNA-1273 | mRNA 疫苗 | S-2P | 美国Moderna 美国国家过敏和传染病研究所 | 2020.12.18 | 94.1 | 100 | |
Sputnik V | 非复制型腺病毒载体疫苗 | rAd26-S +rAd5-S | 俄罗斯加马列亚流行病与微生物学国家研究中心 | 2020.08.11 | 91.6 | 100 | 注射部位疼痛红肿、疲劳、发热、肌肉疼痛等 |
Covaxin | 灭活苗 | / | 印度巴拉特生物技术 | 2021.01.03 | 80.6 | / | |
ChAdOx1 nCoV-19 | 非复制型腺病毒载体疫苗 | ChAdOx-S | 英国牛津大学阿斯利康公司 | 2020.12.30 | 76.0 | 100 | 两种疫苗接种后均出现罕见血栓案例。强生疫苗接种后格林-巴利综合征风险增加 |
Ad26.COV2.S | 非复制型腺病毒载体疫苗 | Ad26-S | 美国强生公司 | 2021.02.27 | / | 66.1 / 85.4 |
[1] |
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China:a descriptive study[J]. Lancet, 2020, 395(10223):507-513.
doi: 10.1016/S0140-6736(20)30211-7 URL |
[2] |
Han S. Clinical vaccine development[J]. Clin Exp Vaccine Res, 2015, 4(1):46-53.
doi: 10.7774/cevr.2015.4.1.46 URL |
[3] |
Sharma O, Sultan AA, Ding H, et al. A review of the progress and challenges of developing a vaccine for COVID-19[J]. Front Immunol, 2020, 11:585354.
doi: 10.3389/fimmu.2020.585354 URL |
[4] |
Stern PL. Key steps in vaccine development[J]. Ann Allergy Asthma Immunol, 2020, 125(1):17-27.
doi: 10.1016/j.anai.2020.01.025 URL |
[5] |
Di Pasquale A, Bonanni P, Garçon N, et al. Vaccine safety evaluation:practical aspects in assessing benefits and risks[J]. Vaccine, 2016, 34(52):6672-6680.
doi: S0264-410X(16)30974-4 pmid: 27836435 |
[6] |
Wang H, Zhang YT, Huang BY, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell, 2020, 182(3):713-721. e9.
doi: S0092-8674(20)30695-4 pmid: 32778225 |
[7] |
Xia SL, Zhang YT, Wang YX, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV:a randomised, double-blind, placebo-controlled, phase 1/2 trial[J]. Lancet Infect Dis, 2021, 21(1):39-51.
doi: 10.1016/S1473-3099(20)30831-8 URL |
[8] |
Kaabi NA, Zhang YT, Xia SL, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults:a randomized clinical trial[J]. JAMA, 2021, 326(1):35-45.
doi: 10.1001/jama.2021.8565 URL |
[9] | 国药网. 环球时报:重磅!中国宣布附条件批准首支新冠疫苗注册申请[EB/OL]. (2020-12-31)[2021-05-01]. http://www.sinopharm.com/s/1223-4126-38895.html . |
National Medicine Network. Global times:heavy! China announces conditional approval of the first application for registration of COVID-19 vaccine[EB/OL]. (2020-12-31)[2021-05-01]. http://www.sinopharm.com/s/1223-4126-38895.html. | |
[10] |
Xia SL, Duan K, Zhang YT, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes:interim analysis of 2 randomized clinical trials[J]. JAMA, 2020, 324(10):951-960.
doi: 10.1001/jama.2020.15543 URL |
[11] | 国药网. 双响!国药集团中国生物武汉生物制品研究所新冠灭活疫苗上市[EB/OL]. [EB/OL]. (2021-02-27)[2021-05-01]. http://www.sinopharm.com/s/1223-4126-39017.html. |
National Medicine Network. Double ring! sinopharmaceutical group China biological wuhan institute of biological products COVID-19 inactivated vaccine on the market[EB/OL]. (2021-02-27)[2021-05-01].http://www.sinopharm.com/s/1223-4126-39017.html. | |
[12] |
Gao Q, Bao LL, Mao HY, et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369(6499):77-81.
doi: 10.1126/science.abc1932 URL |
[13] |
Zhang YJ, Zeng G, Pan HX, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years:a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2021, 21(2):181-192.
doi: 10.1016/S1473-3099(20)30843-4 URL |
[14] |
Wu ZW, Hu YL, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine(CoronaVac)in healthy adults aged 60 years and older:a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2021, 21(6):803-812.
doi: 10.1016/S1473-3099(20)30987-7 URL |
[15] | SINOVAC科兴. 智利卫生部发布科兴新冠疫苗克尔来福®真实世界使用效果评价研究结果[EB/OL]. (2021-04-19)[2021-05-01]. http://www.sinovac.com.cn/news/shownews.php?id=1205. . |
SINOVAC. The Ministry of health of Chile has released the results of a study on the evaluation of the real-world use effect of sinovac vaccine[EB/OL]. (2021-04-19)[2021-05-01]. http://www.sinovac.com.cn/news/shownews.php?id=1205. | |
[16] |
Wu SP, Zhong GX, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge[J]. Nat Commun, 2020, 11(1):4081.
doi: 10.1038/s41467-020-17972-1 URL |
[17] |
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine:a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395(10240):1845-1854.
doi: 10.1016/S0140-6736(20)31208-3 URL |
[18] |
Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older:a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2020, 396(10249):479-488.
doi: 10.1016/S0140-6736(20)31605-6 URL |
[19] | Halperin SA, Ye L, MacKinnon-Cameron D, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine(adenovirus type 5 vector)in adults 18 years and older:an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial[J]. Lancet, 2021, S0140- 6736(21)02753-7. |
[20] |
An YL, Li SH, Jin XY, et al. A tandem-repeat dimeric RBD protein-based COVID-19 vaccine ZF2001 protects mice and nonhuman primates[J]. bioRxiv, 2021. DOI: 10.1101/2021.03.11.434928.
doi: 10.1101/2021.03.11.434928 |
[21] |
Yang SL, Li Y, Dai LP, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine(ZF2001)against COVID-19 in adults:two randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J]. Lancet Infect Dis, 2021, 21(8):1107-1119.
doi: 10.1016/S1473-3099(21)00127-4 URL |
[22] | ZFSW. 重组新冠疫苗对奥密克戎变异株依然有效[EB/OL]. (2021-12-13)[2021-12-22]. http://www.zflongkema.com/news/qyyw/2021-12-13/273.html. |
ZFSW. Recombinant COVID-19 vaccine is still effective against Omicron mutant strain[EB/OL]. (2021-12-13)[2021-12-22]. http://www.zflongkema.com/news/qyyw/2021-12-13/273.html. | |
[23] |
Huang BY, Dai LP, Wang H, et al. Neutralization of SARS-CoV-2 VOC 501Y. V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines[J]. bioRxiv, 2021. DOI: 10.1101/2021.02.01.429069.
doi: 10.1101/2021.02.01.429069 |
[24] |
Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates[J]. N Engl J Med, 2020, 383(25):2439-2450.
doi: 10.1056/NEJMoa2027906 URL |
[25] |
Sahin U, Muik A, Vogler I, et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans[J]. medRxiv, 2020. DOI: 10.1101/2020.12.09,20245175.
doi: 10.1101/2020.12.09 |
[26] |
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine[J]. N Engl J Med, 2020, 383(27):2603-2615.
doi: 10.1056/NEJMoa2034577 URL |
[27] |
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report[J]. N Engl J Med, 2020, 383(20):1920-1931.
doi: 10.1056/NEJMoa2022483 URL |
[28] |
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. N Engl J Med, 2021, 384(5):403-416.
doi: 10.1056/NEJMoa2035389 URL |
[29] | Monderna. Moderna highlights publication of antibody persistence data of its COVID-19 vaccine out to 6 months in the New England Journal of Medicine[EB/OL]. (2021-04-07)[2021-05-01]. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-it-has-shipped-variant-specific-vaccine. |
[30] | Monderna. Moderna announces it has shipped variant-specific vaccine candidate, mRNA-1273. 351, to NIH for clinical study[EB/OL]. (2021-02-24)[2021-05-01]. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-it-has-shipped-variant-specific-vaccine. |
[31] |
Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques[J]. Nature, 2020, 586(7830):583-588.
doi: 10.1038/s41586-020-2607-z URL |
[32] | Stephenson KE le Gars M, Sadoff J, et al. Immunogenicity of the Ad26. COV2. S vaccine for COVID-19[J]. JAMA, 2021, 325(15):1535-1544. |
[33] |
Sadoff J le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26. COV2. S COVID-19 vaccine[J]. N Engl J Med, 2021, 384(19):1824-1835.
doi: 10.1056/NEJMoa2034201 URL |
[34] |
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against COVID-19[J]. N Engl J Med, 2021, 384(23):2187-2201.
doi: 10.1056/NEJMoa2101544 URL |
[35] |
van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques[J]. Nature, 2020, 586(7830):578-582.
doi: 10.1038/s41586-020-2608-y URL |
[36] |
Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19(AZD1222)vaccine in a phase 1/2 clinical trial[J]. Nat Med, 2021, 27(2):270-278.
doi: 10.1038/s41591-020-01194-5 URL |
[37] | University of Oxford. AstraZeneca publish primary analysis from US trial of coronavirus vaccine[EB/OL]. (2021-03-25)[2021-05-01]. https://www.research.ox.ac.uk/Article/2021-03-25-astrazeneca-publish-primary-analysis-from-us-trial-of-coronavirus-vaccine. |
[38] |
Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design:the Janus face of immune enhancement[J]. Nat Rev Immunol, 2020, 20(6):347-348.
doi: 10.1038/s41577-020-0323-4 URL |
[39] |
Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152:interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial[J]. Lancet Infect Dis, 2021, 21(7):950-961.
doi: 10.1016/S1473-3099(21)00070-0 URL |
[40] | Bharat Biotech. Bharat Biotech announces phase 3 results of COVAXIN®:India’s first COVID-19 vaccine demonstrates interim clinical efficacy of 81%[EB/OL]. (2021-03-03)[2021-05-01]. https://science.thewire.in/the-sciences/covaxin-interim-phase-3-trials-81-effective-bharat-biotech/. |
[41] |
Sapkal GN, Yadav PD, Ella R, et al. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum[J]. bioRxiv, 2021. DOI: 10.1101/2021.01.26.426986.
doi: 10.1101/2021.01.26.426986 |
[42] |
Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective[J]. Lancet, 2021, 397(10275):642-643.
doi: 10.1016/S0140-6736(21)00191-4 pmid: 33545098 |
[43] |
Balakrishnan VS. The arrival of sputnik V[J]. Lancet Infect Dis, 2020, 20(10):1128.
doi: S1473-3099(20)30709-X pmid: 32979327 |
[44] |
Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine:an interim analysis of a randomised controlled phase 3 trial in Russia[J]. Lancet, 2021, 397(10275):671-681.
doi: 10.1016/S0140-6736(21)00234-8 pmid: 33545094 |
[45] | Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years:a randomised, double-blind, controlled, phase 1/2 trial[J]. Lancet Infect Dis, 2021, S1473-S3099(21)00462-X. |
[46] | Clinical Trials. gov. Antibody response to COVID-19 vaccines in liver disease patients[EB/OL]. (2021-03-01)[2021-07-18]. https://clinicaltrials.gov/ct2/show/NCT04775069. |
[47] | Food and drug administration(fda). Coronavirus(COVID-19)update:June 25, 2021[EB/OL]. (2021-06-25)[2021-07-18]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-june-25-2021. |
[48] | Food and drug administration(fda). Coronavirus(COVID-19)update:July 13, 2021[EB/OL]. (2021-07-13)[2021-07-18].https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-july-13-2021. |
[49] | Food and drug administration(fda). Coronavirus(COVID-19)Update:December 14, 2021[EB/OL]. (2021-12-14)[2021-12-22]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-december-14-2021. |
[50] |
Greinacher A, Thiele T, Warkentin TE, et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination[J]. N Engl J Med, 2021, 384(22):2092-2101.
doi: 10.1056/NEJMoa2104840 URL |
[51] |
Excler JL, Kim JH. Novel prime-boost vaccine strategies against HIV-1[J]. Expert Rev Vaccines, 2019, 18(8):765-779.
doi: 10.1080/14760584.2019.1640117 URL |
[52] |
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations:two open, non-randomised phase 1/2 studies from Russia[J]. Lancet, 2020, 396(10255):887-897.
doi: 10.1016/S0140-6736(20)31287-3 URL |
[53] |
Normark J, Vikström L, Gwon YD, et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination[J]. N Engl J Med, 2021, 385(11):1049-1051.
doi: 10.1056/NEJMc2110716 URL |
[54] |
Li JX, Hou LH, Guo XL, et al. Heterologous prime-boost immunization with CoronaVac and convidecia[J]. medRxiv, 2021, DOI: 10.1101/2021.09.03.21263062.
doi: 10.1101/2021.09.03.21263062 |
[55] | Cherian S, Potdar V, Jadhav S, et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India[J]. Microorganisms, 2021, 9(7):1542. |
[56] |
Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against the B. 1. 617. 2(Delta)variant[J]. N Engl J Med, 2021, 385(7):585-594.
doi: 10.1056/NEJMoa2108891 URL |
[57] |
Muecksch F, Weisblum Y, Barnes CO, et al. Development of potency, breadth and resilience to viral escape mutations in SARS-CoV-2 neutralizing antibodies[J]. bioRxiv, 2021, DOI: 10.1101/2021.03.07.434227.
doi: 10.1101/2021.03.07.434227 |
[58] |
Abu-Raddad LJ, Chemaitelly H, Butt AA, et al. Effectiveness of the BNT162b2 COVID-19 vaccine against the B. 1. 1. 7 and B. 1. 351 variants[J]. N Engl J Med, 2021, 385(2):187-189.
doi: 10.1056/NEJMc2104974 URL |
[59] |
Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B. 1. 1. 7 and B. 1. 351 variants and severe COVID-19 disease in Qatar[J]. Nat Med, 2021, 27(9):1614-1621.
doi: 10.1038/s41591-021-01446-y pmid: 34244681 |
[60] |
Callaway E. Delta coronavirus variant:scientists brace for impact[J]. Nature, 2021, 595(7865):17-18.
doi: 10.1038/d41586-021-01696-3 URL |
[61] | Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19(AZD1222)vaccine against SARS-CoV-2 variant of concern 202012/01(B. 1. 1. 7):an exploratory analysis of a randomised controlled trial[J]. Lancet, 2021, 397(10282 ) |
[62] |
World Health Organization. Classification of Omicron(B. 1. 1. 529):SARS-CoV-2 variant of concern. [EB/OL]. (2021-11-26)[2021-12-18]. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.
doi: 10.1002/jmv.27491 URL |
[63] | Gao SJ, Guo HT, Luo GX. Omicron variant(B. 1. 1. 529)of SARS-CoV-2, a global urgent public health alert![J]. J Med Virol, 2021. DOI: 10.1002/jmv.27491. |
[64] | Kupferschmidt K. Where did ‘weird’ Omicron come from?[J]. Science, 2021, 374(6572):1179. |
[65] | Souza WM, Amorim MR, Sesti-Costa R, et al. Neutralisation of SARS-CoV-2 lineage P. 1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine:an immunological study[J]. Lancet Microbe, 2021, 2(10):e527-e535. |
[66] | Chen J, Liu XM, Zhang XY, et al. Decline in neutralising antibody responses, but sustained T-cell immunity, in COVID-19 patients at 7 months post-infection[J]. Clin Transl Immunology, 2021, 10(7):e1319. |
[67] |
Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity[J]. Emerg Infect Dis, 2005, 11(11):1730-1737.
doi: 10.3201/eid1111.040659 URL |
[68] |
Li CK, Wu H, Yan H, et al. T cell responses to whole SARS coronavirus in humans[J]. J Immunol, 2008, 181(8):5490-5500.
doi: 10.4049/jimmunol.181.8.5490 URL |
[69] |
Diao B, Wang CH, Tan YJ, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019(COVID-19)[J]. Front Immunol, 2020, 11:827.
doi: 10.3389/fimmu.2020.00827 URL |
[70] |
Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity[J]. Cell, 2021, 184(9):2372-2383. e9.
doi: 10.1016/j.cell.2021.03.013 pmid: 33743213 |
[71] |
Joag V, Wijeyesinghe S, Stolley JM, et al. Cutting edge:mouse SARS-CoV-2 epitope reveals infection and vaccine-elicited CD8 T cell responses[J]. J Immunol, 2021, 206(5):931-935.
doi: 10.4049/jimmunol.2001400 URL |
[72] |
Farinholt T, Doddapaneni H, Qin X, et al. Transmission event of SARS-CoV-2 delta variant reveals multiple vaccine breakthrough infections[J]. BMC Med, 2021, 19(1):255.
doi: 10.1186/s12916-021-02103-4 pmid: 34593004 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||