Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 167-178.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1386
Previous Articles Next Articles
JIANG Mei-yan(), ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei()
Received:
2021-11-05
Online:
2022-08-26
Published:
2022-09-14
Contact:
WU Wei
E-mail:jiangmeiyan@stu.sicau.edu.cn;ewuwei@sicau.edu.cn
JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana[J]. Biotechnology Bulletin, 2022, 38(8): 167-178.
菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability |
---|---|---|---|---|---|
XA-4 | + | XD-6 | + | XD-25 | + |
XB-8 | ++ | XD-9 | ++ | XD-27 | ++ |
XB-9 | ++ | XD-10 | ++ | XD-30 | + |
XB-11 | ++ | XD-13 | ++ | XD-34 | + |
XB-13 | ++ | XD-17 | + | XD-36 | + |
XB-14 | ++ | XD-20 | + | XI-1 | ++ |
XB-15 | ++ | XD-23 | ++ | XI-3 | ++ |
XD-2 | + | XD-24 | + |
Table 1 Screening of nitrogen-fixing activity of strains around the rhizosphere of A. dahurica var. formosana
菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability | 菌株编号 Bacterial strain No. | 固氮能力 Nitrogen-fixing ability |
---|---|---|---|---|---|
XA-4 | + | XD-6 | + | XD-25 | + |
XB-8 | ++ | XD-9 | ++ | XD-27 | ++ |
XB-9 | ++ | XD-10 | ++ | XD-30 | + |
XB-11 | ++ | XD-13 | ++ | XD-34 | + |
XB-13 | ++ | XD-17 | + | XD-36 | + |
XB-14 | ++ | XD-20 | + | XI-1 | ++ |
XB-15 | ++ | XD-23 | ++ | XI-3 | ++ |
XD-2 | + | XD-24 | + |
Fig. 2 Determination of dissolving inorganic phosphorus activities of bacteria around the rhizosphere of A. dahurica var. formosana Different letters refer to significant differences(P<0.05),the same below
菌株Bacterial strain | 颜色Color | 形态Morphology | 隆起度Uplift | 边缘Edge | 光泽Glossy | 革兰氏染色Gram staining |
---|---|---|---|---|---|---|
XA-4 | 乳白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XA-6 | 乳白色 | 点状 | 拱起 | 完整 | 有 | + |
XB-8 | 乳白色 | 圆形 | 拱起 | 波状 | 有 | - |
XB-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-11 | 透明 | 圆形 | 扁平 | 波状 | 有 | - |
XB-13 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-14 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-15 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-1 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-2 | 白色 | 圆形 | 拱起 | 完整 | 无 | + |
XD-2 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-3 | 白色 | 圆形 | 脐突状 | 裂叶状 | 无 | + |
XD-6 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-10 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-11 | 白色 | 圆形 | 拱起 | 完整 | 有 | + |
XD-13 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-15 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-17 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-20 | 白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-23 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-24 | 白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XD-25 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-27 | 白色 | 圆形 | 脐凹状 | 完整 | 有 | + |
XD-29 | 乳白色 | 不规则 | 拱起 | 裂叶状 | 有 | + |
XD-30 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-34 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-36 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XI-1 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-3 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-7 | 黄白色 | 圆形 | 扁平 | 波状 | 有 | + |
Table 2 Morphology and Gram staining characteristics of bacteria around the rhizosphere of A. dahurica var. formosana
菌株Bacterial strain | 颜色Color | 形态Morphology | 隆起度Uplift | 边缘Edge | 光泽Glossy | 革兰氏染色Gram staining |
---|---|---|---|---|---|---|
XA-4 | 乳白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XA-6 | 乳白色 | 点状 | 拱起 | 完整 | 有 | + |
XB-8 | 乳白色 | 圆形 | 拱起 | 波状 | 有 | - |
XB-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-11 | 透明 | 圆形 | 扁平 | 波状 | 有 | - |
XB-13 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-14 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | - |
XB-15 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-1 | 白色 | 圆形 | 扁平 | 波状 | 有 | + |
XC-2 | 白色 | 圆形 | 拱起 | 完整 | 无 | + |
XD-2 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-3 | 白色 | 圆形 | 脐突状 | 裂叶状 | 无 | + |
XD-6 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-9 | 乳白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-10 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-11 | 白色 | 圆形 | 拱起 | 完整 | 有 | + |
XD-13 | 灰白色 | 圆形 | 扁平 | 波状 | 有 | + |
XD-15 | 白色 | 圆形 | 拱起 | 裂叶状 | 无 | + |
XD-17 | 灰白色 | 圆形 | 扁平 | 完整 | 有 | + |
XD-20 | 白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-23 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-24 | 白色 | 圆形 | 扁平 | 裂叶状 | 无 | + |
XD-25 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-27 | 白色 | 圆形 | 脐凹状 | 完整 | 有 | + |
XD-29 | 乳白色 | 不规则 | 拱起 | 裂叶状 | 有 | + |
XD-30 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | + |
XD-34 | 白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XD-36 | 灰白色 | 圆形 | 脐凹状 | 波状 | 有 | + |
XI-1 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-3 | 灰白色 | 圆形 | 拱起 | 波状 | 有 | - |
XI-7 | 黄白色 | 圆形 | 扁平 | 波状 | 有 | + |
菌株Bacterial strain | 对比信息(登陆号)Comparison information(Accession) | 相似性Similarity /% | 系统类别 System class |
---|---|---|---|
XA-4 | Bacillus subtilis strain ge25(MW186208.1) | 99.93 | Bacillus |
XA-6 | Paenibacillus alvei isolate Paenibacillus B-LR1(LS992241.1) | 99.93 | Paenibacillus |
XB-8 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-9 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-11 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.93 | Pseudomonas |
XB-13 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-14 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-15 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.72 | Pseudomonas |
XC-1 | Paenibacillus dendritiformis strain PV3-16(MH472941.1) | 99.65 | Paenibacillus |
XC-2 | Bacillus subtilis strain kp6(MH200633.1) | 99.65 | Bacillus |
XD-2 | Bacillus megaterium strain S21(MT925631.1) | 100 | Bacillus |
XD-3 | Bacillus subtilis strain ge25(MW186208.1) | 99.86 | Bacillus |
XD-6 | Bacillus subtilis strain ge25(MW186208.1) | 99.58 | Bacillus |
XD-9 | Bacillus aryabhattai strain ZJJH-2(MT605509.1) | 99.79 | Bacillus |
XD-10 | Bacillus megaterium strain HX-2(MH930825.1) | 99.65 | Bacillus |
XD-11 | Fictibacillus barbaricus strain N7(KJ831620.1) | 100 | Fictibacillus |
XD-13 | Bacillus megaterium strain HX-2(MH930825.1) | 99.72 | Bacillus |
XD-15 | Bacillus subtilis strain T0-8(MN330082.1) | 99.86 | Bacillus |
XD-17 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-20 | Bacillus aryabhattai strain fwz34(KF208484.1) | 99.86 | Bacillus |
XD-23 | Bacillus aryabhattai strain ZDX(MN473280.1) | 99.86 | Bacillus |
XD-24 | Bacillus subtilis strain MJP1(EU024822.1) | 99.86 | Bacillus |
XD-25 | Bacillus megaterium strain S1(MT453994.1) | 100 | Bacillus |
XD-27 | Priestia aryabhattai strain DT(MW673658.1) | 99.93 | Bacillus |
XD-29 | Bacillus pseudomycoides strain L59(KU179350.1) | 99.79 | Bacillus |
XD-30 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-34 | Bacillus aryabhattai strain QH16-25(MT078622.1) | 99.79 | Bacillus |
XD-36 | Bacillus megaterium strain CS9(MG430216.1) | 99.72 | Bacillus |
XI-1 | Klebsiella grimontii strain RHBSTW-00853(CP056150.1) | 99.79 | Klebsiella |
XI-3 | Klebsiella grimontii strain RHBSTW-00854(CP056150.1) | 99.64 | Klebsiella |
XI-7 | Bacillus licheniformis strain HN-1(MH373532.1) | 99.93 | Bacillus |
Table 3 Homology analysis of 16S rDNA sequences of all strains
菌株Bacterial strain | 对比信息(登陆号)Comparison information(Accession) | 相似性Similarity /% | 系统类别 System class |
---|---|---|---|
XA-4 | Bacillus subtilis strain ge25(MW186208.1) | 99.93 | Bacillus |
XA-6 | Paenibacillus alvei isolate Paenibacillus B-LR1(LS992241.1) | 99.93 | Paenibacillus |
XB-8 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-9 | Enterobacter cloacae strain NaCd1(KT336353.1) | 99.79 | Enterobacter |
XB-11 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.93 | Pseudomonas |
XB-13 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-14 | Enterobacter cloacae strain TPL2(KJ470636.1) | 99.79 | Enterobacter |
XB-15 | Pseudomonas lalkuanensis strain PE08(CP043311.1) | 99.72 | Pseudomonas |
XC-1 | Paenibacillus dendritiformis strain PV3-16(MH472941.1) | 99.65 | Paenibacillus |
XC-2 | Bacillus subtilis strain kp6(MH200633.1) | 99.65 | Bacillus |
XD-2 | Bacillus megaterium strain S21(MT925631.1) | 100 | Bacillus |
XD-3 | Bacillus subtilis strain ge25(MW186208.1) | 99.86 | Bacillus |
XD-6 | Bacillus subtilis strain ge25(MW186208.1) | 99.58 | Bacillus |
XD-9 | Bacillus aryabhattai strain ZJJH-2(MT605509.1) | 99.79 | Bacillus |
XD-10 | Bacillus megaterium strain HX-2(MH930825.1) | 99.65 | Bacillus |
XD-11 | Fictibacillus barbaricus strain N7(KJ831620.1) | 100 | Fictibacillus |
XD-13 | Bacillus megaterium strain HX-2(MH930825.1) | 99.72 | Bacillus |
XD-15 | Bacillus subtilis strain T0-8(MN330082.1) | 99.86 | Bacillus |
XD-17 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-20 | Bacillus aryabhattai strain fwz34(KF208484.1) | 99.86 | Bacillus |
XD-23 | Bacillus aryabhattai strain ZDX(MN473280.1) | 99.86 | Bacillus |
XD-24 | Bacillus subtilis strain MJP1(EU024822.1) | 99.86 | Bacillus |
XD-25 | Bacillus megaterium strain S1(MT453994.1) | 100 | Bacillus |
XD-27 | Priestia aryabhattai strain DT(MW673658.1) | 99.93 | Bacillus |
XD-29 | Bacillus pseudomycoides strain L59(KU179350.1) | 99.79 | Bacillus |
XD-30 | Bacillus megaterium strain HX-2(MH930825.1) | 99.79 | Bacillus |
XD-34 | Bacillus aryabhattai strain QH16-25(MT078622.1) | 99.79 | Bacillus |
XD-36 | Bacillus megaterium strain CS9(MG430216.1) | 99.72 | Bacillus |
XI-1 | Klebsiella grimontii strain RHBSTW-00853(CP056150.1) | 99.79 | Klebsiella |
XI-3 | Klebsiella grimontii strain RHBSTW-00854(CP056150.1) | 99.64 | Klebsiella |
XI-7 | Bacillus licheniformis strain HN-1(MH373532.1) | 99.93 | Bacillus |
[1] | 王梦月, 贾敏如, 马逾英, 等. 白芷中四种线型呋喃香豆素类成分药理作用研究[J]. 天然产物研究与开发, 2010, 22(3):485-489. |
Wang MY, Jia MR, Ma YY, et al. Pharmacological effect of four linear furocoumarins in Radix angelicae dahuricae[J]. Nat Prod Res Dev, 2010, 22(3):485-489. | |
[2] | 李晓强, 谭余庆, 李慧杰, 等. 欧前胡素药理作用及机制研究进展[J]. 中国实验方剂学杂志, 2020, 26(18):196-201. |
Li XQ, Tan YQ, Li HJ, et al. Research progress on pharmacological effect and mechanism of imperatorin[J]. Chin J Exp Tradit Med Formulae, 2020, 26(18):196-201. | |
[3] | 李宏宇, 戴跃进, 张海波, 等. 不同商品白芷的药理研究[J]. 中国中药杂志, 1991, 16(9):560-562, 576. |
Li HY, Dai YJ, Zhang HB, et al. Pharmacological studies on the Chinese drug Radix angelicae dahuricae[J]. China J Chin Mater Med, 1991, 16(9):560-562, 576. | |
[4] | 赵东岳, 郝庆秀, 康利平, 等. 伞形科药用植物早期抽薹研究进展[J]. 中国中药杂志, 2016, 41(1):20-23. |
Zhao DY, Hao QX, Kang LP, et al. Advance in studying early bolting of Umbelliferae medicinal plant[J]. China J Chin Mater Med, 2016, 41(1):20-23. | |
[5] | 郑利, 邓聪, 冯亮, 等. 遂宁川白芷产业发展现状与分析[J]. 农村经济与科技, 2020, 31(20):181-182. |
Zheng L, Deng C, Feng L, et al. Development status and analysis of Angelica dahurica industry in Suining[J]. Rural Econ Sci Technol, 2020, 31(20):181-182. | |
[6] | 徐博, 吴翠, 徐靓, 等. 白芷药材采后各环节影响质量的因素调研与对策建议[J]. 中国实验方剂学杂志, 2021, 27(3):149-155. |
Xu B, Wu C, Xu L, et al. Investigation and suggestions on factors affecting quality of Angelicae dahuricae radix(Baizhi)in some post-harvest processes[J]. Chin J Exp Tradit Med Formulae, 2021, 27(3):149-155. | |
[7] | 张亚琴, 雷飞益, 陈雨, 等. 锌硼钼配施对川白芷药材农艺性状与产量的影响[J]. 植物营养与肥料学报, 2018, 24(3):769-778. |
Zhang YQ, Lei FY, Chen Y, et al. Effect of combined fertilization of zinc, boron and molybdenum on agronomic traits and yield of Angelica dahurica[J]. J Plant Nutr Fertil, 2018, 24(3):769-778. | |
[8] |
张亚琴, 杨正明, 石峰, 等. 叶面喷施微肥对川白芷主要有效成分含量的影响[J]. 应用生态学报, 2017, 28(11):3505-3514.
doi: 10.13287/j.1001-9332.201711.001 |
Zhang YQ, Yang ZM, Shi F, et al. Effects of micro-fertilizers foliar spray on the content of main effective components of Angelica dahurica[J]. Chin J Appl Ecol, 2017, 28(11):3505-3514.
doi: 10.13287/j.1001-9332.201711.001 |
|
[9] |
Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria(PGPR)as green bioinoculants:recent developments, constraints, and prospects[J]. Sustainability, 2021, 13(3):1140.
doi: 10.3390/su13031140 URL |
[10] | AlAli HA, Khalifa A, Almalki M. Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus[J]. S Afr N J Bot, 2021, 139:200-209. |
[11] | 刘东昀, 袁永强, 仇荣亮, 等. 根际促生菌Enterobacter sp. EG16对小白菜生长及硒吸收的影响[J]. 农业环境科学学报, 2021, 40(7):1420-1431. |
Liu DY, Yuan YQ, Qiu RL, et al. Effect of plant growth promoting rhizobacteria Enterobacter sp. EG16 on the growth and Selenium uptake of Brassica chinensis L[J]. J Agro Environ Sci, 2021, 40(7):1420-1431. | |
[12] |
潘晶, 黄翠华, 彭飞, 等. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9):75-87.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511 |
Pan J, Huang CH, Peng F, et al. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnol Bull, 2020, 36(9):75-87. | |
[13] | 刘方春, 邢尚军, 马海林, 等. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响[J]. 应用生态学报, 2014, 25(5):1475-1482. |
Liu FC, Xing SJ, Ma HL, et al. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut(Juglans regia)rhizosphere soil under drought condition[J]. Chin J Appl Ecol, 2014, 25(5):1475-1482. | |
[14] |
Keswani C, Prakash O, Bharti N, et al. re-addressing the biosafety issues of plant growth promoting rhizobacteria[J]. Sci Total Environ, 2019, 690:841-852.
doi: 10.1016/j.scitotenv.2019.07.046 |
[15] | 蒲盛才, 张兴翠, 丁德蓉, 等. 氮、磷、钾施用量及其配比对白芷产量的影响[J]. 中国生态农业学报, 2006, 14(1):136-138. |
Pu SC, Zhang XC, Ding DR, et al. The influence of the application amount of N, P, K and its provision on the yield of Angelical dahurica var. formosasa[J]. Chin J Eco Agric, 2006, 14(1):136-138. | |
[16] | 蒲盛才, 申明亮, 邓才富, 等. 氮磷钾施用量及其配比对白芷早期抽苔的影响[J]. 西南大学学报:自然科学版, 2011, 33(11):168-172. |
Pu SC, Shen ML, Deng CF, et al. Effects of N, P and K rates and their proportions on curtail earlier bolting of Angelica dahurica var. formosana[J]. J Southwest Univ Nat Sci Ed, 2011, 33(11):168-172. | |
[17] | 翟娟园, 吴卫, 廖凯, 等. 土壤环境对川白芷产量和品质的影响研究[J]. 中草药, 2010, 41(6):984-988. |
Zhai JY, Wu W, Liao K, et al. Effects of soil factors on yield and quality of Angelica dahurica var. Formosana[J]. Chin Tradit Herb Drugs, 2010, 41(6):984-988. | |
[18] |
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5):104-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0840 |
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnol Bull, 2020, 36(5):104-109. | |
[19] | 王明欢, 张小娜, 林冰, 等. 中药药渣中固氮菌、解磷菌、解钾菌的筛选[J]. 中成药, 2020, 42(2):531-533. |
Wang MH, Zhang XN, Lin B, et al. Screening of nitrogen-fixing bacteria, phosphate-solubilizing bacteria and potassium-solubilizing bacteria from traditional Chinese medicine residues[J]. Chin Tradit Pat Med, 2020, 42(2):531-533. | |
[20] | 程诚. 溶铁细菌生物学特性及其溶铁效果的研究[D]. 南京: 南京农业大学, 2014. |
Cheng C. Biological characterizations of bacterial strains with the ability of biological iron removal and their effect on iron dissolution[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[21] |
刘晔, 刘晓丹, 张林利, 等. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017, 33(10):125-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0233 |
Liu Y, Liu XD, Zhang LL, et al. Screening, identification of multifunctional peanut root-promoting rhizobacteria and its promoting effects on peanuts(Arachis hypogaea L. )[J]. Biotechnol Bull, 2017, 33(10):125-134. | |
[22] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual of common system identification[M]. Beijing: Science Press, 2001. | |
[23] | 国家药典委员会. 中华人民共和国药典[M]. 四部. 北京: 中国医药科技出版社, 2020. |
Chinese Pharmacopoeia Commission. The Chinese pharmacopoeia[M]. part 4. Beijing: China Medical And Technology Press, 2020. | |
[24] | 冉聪. 川芎内生细菌的分离鉴定及其促生研究[D]. 雅安: 四川农业大学, 2019. |
Ran C. Study on the growth-promoting and taxonomy of endophytic bacteria isolated from Ligusticum Chuanxiong hort[D]. Yaan: Sichuan Agricultural University, 2019. | |
[25] | 黄钦, 尉广飞, 常瑞雪, 等. 微生物肥料发展现状及其在中药材种植中的应用[J]. 中国现代中药, 2022, 24(1): 153-159. |
Huang Q, Yu GF, Chang RX, et al. Developmental situation of microbial feitilizer and its application in Chinese medicinal herbs cultivation[J]. Mod Chin Med, 2022, 24(1): 153-159. | |
[26] | 张万通, 李超群, 于露, 等. 植物根际促生菌菌肥在高寒草甸替代化肥效应研究[J]. 草地学报, 2021, 29(7):1423-1429. |
Zhang WT, Li CQ, Yu L, et al. Study on the effect of the plant growth-promoting rhizobacteria bio-fertilizer instead of chemical fertilizer in alpine meadow[J]. Acta Agrestia Sin, 2021, 29(7):1423-1429. | |
[27] |
Scagliola M, Valentinuzzi F, Mimmo T, et al. Bioinoculants as promising complement of chemical fertilizers for a more sustainable agricultural practice[J]. Front Sustain Food Syst, 2021, 4:622169.
doi: 10.3389/fsufs.2020.622169 URL |
[28] |
Pérez-Rodriguez MM, Piccoli P, Anzuay MS, et al. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime[J]. Sci Rep, 2020, 10(1):15642.
doi: 10.1038/s41598-020-72507-4 pmid: 32973225 |
[29] | 荣良燕, 姚拓, 黄高宝, 等. 植物根际优良促生菌(PGPR)筛选及其接种剂部分替代化肥对玉米生长影响研究[J]. 干旱地区农业研究, 2013, 31(2):59-65. |
Rong LY, Yao T, Huang GB, et al. Screening of plant growth promoting rhizobacteria strains and effects of inoculant on growth of maize by replacing part of chemical fertilizers[J]. Agric Res Arid Areas, 2013, 31(2):59-65. | |
[30] | 李永斌, 李云龙, 关国华, 等. 植物根际促生菌的筛选、鉴定及其对小麦的减肥增产效果[J]. 农业生物技术学报, 2020, 28(8):1471-1476. |
Li YB, Li YL, Guan GH, et al. Screening, identification of plant growth promoting rhizobacteria and its effect on reducing fertilization while increasing efficiency in wheat(Triticum aestivum)[J]. J Agric Biotechnol, 2020, 28(8):1471-1476. | |
[31] |
Vasseur-Coronado M, du Boulois HD, Pertot I, et al. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products[J]. Microbiol Res, 2021, 245:126672.
doi: 10.1016/j.micres.2020.126672 URL |
[32] |
雷海英, 赵青松, 杨潇, 等. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9):157-166.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0379 |
Lei HY, Zhao QS, Yang X, et al. Isolation of efficient nitrogen-fixing bacteria from the rhizosphere of Sophora flavescens and the growth-promoting effect of compound microbial fertilizer on seedlings[J]. Biotechnol Bull, 2020, 36(9):157-166. | |
[33] | 王丹丹, 殷志秋, 孙丽, 等. 缓解花生连作障碍的根际促生菌分离及功能鉴定[J]. 微生物学报, 2021, 61(12):4086-4096. |
Wang DD, Yin ZQ, Sun L, et al. Isolation and identification of peanut plant-growth promoting rhizobacteria with the potential to alleviate continuous cropping obstacle[J]. Acta Microbiol Sin, 2021, 61(12):4086-4096. | |
[34] | 路晓培. 植物根际促生细菌的分离鉴定及对马铃薯快繁苗生长的影响[D]. 呼和浩特: 内蒙古农业大学, 2020. |
Lu XP. Isolation and identification of growth-promoting rhizobacteria and the growth promotion to potato rapid propagation plantlet[D]. Hohhot: Inner Mongolia Agricultural University, 2020. | |
[35] | 邵美琪, 赵卫松, 苏振贺, 等. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21):4573-4584. |
Shao MQ, Zhao WS, Su ZH, et al. Effect of Bacillus subtilis NCD-2 on the growth of tomato and the microbial community structure of rhizosphere soil under salt stress[J]. Sci Agric Sin, 2021, 54(21):4573-4584. | |
[36] | 杨丽娟, 王玉凤, 张翼飞, 等. 产酸克雷伯氏菌提高玉米幼苗耐盐碱胁迫的机理[J]. 植物营养与肥料学报, 2021, 27(6):1044-1054. |
Yang LJ, Wang YF, Zhang YF, et al. Klebsiella oxytoca improves resistance of maize seedling to saline-alkali stress[J]. J Plant Nutr Fertil, 2021, 27(6):1044-1054. | |
[37] | 林杨, 潘泽群, 张金鹏, 等. 吉林克雷伯氏菌2N3对噻吩磺隆的降解特性及其土壤修复作用[J]. 西北农林科技大学学报:自然科学版, 2021, 49(1):102-107. |
Lin Y, Pan ZQ, Zhang JP, et al. Characteristics of Klebsiella jilinsis 2N3 in thifensulfuron-methyl degradation and soil remediation[J]. J Northwest A F Univ Nat Sci Ed, 2021, 49(1):102-107. | |
[38] | 谢澳文, 樊磊, 韩一鸣, 等. 降解AFB1的克雷伯氏菌分离、鉴定及降解机理初步研究[J]. 河南工业大学学报:自然科学版, 2021, 42(2):64-70. |
Xie AW, Fan L, Han YM, et al. Isolation, identification of Klebsiella and its degradation mechanism of AFB1[J]. J Henan Univ Technol Nat Sci Ed, 2021, 42(2):64-70. | |
[39] |
Passet V, Brisse S. Description of Klebsiella grimontii sp. nov[J]. Int J Syst Evol Microbiol, 2018, 68(1):377-381.
doi: 10.1099/ijsem.0.002517 URL |
[40] | 袁媛, 周骏辉, 黄璐琦. 黄芩道地性形成“逆境效应”的实验验证与展望[J]. 中国中药杂志, 2016, 41(1):139-143. |
Yuan Y, Zhou JH, Huang LQ. Experimental verification and prospect on stress effect of Dao-di herbs Scutellaria baicalensis[J]. China J Chin Mater Med, 2016, 41(1):139-143. |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[3] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[4] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[5] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[6] | XU Jin-yi, NA Bin-bin, LIU Shun, CHEN Chao, SUN Hong, ZHENG Yu-long. Excellent Lactic Acid Bacteria for Silage and Their Application [J]. Biotechnology Bulletin, 2021, 37(9): 39-47. |
[7] | LI He-ping, LI Ji-ming, LI Ai-guo, WU Jun-yan, SONG Cong-min, SHEN Yan-ping, YANG Li. Effects of Seedling Time on Overwintering Rate and Yield of Winter Oil Rapeseeds(Brassica rapa)in Over-exploited Water Area of Hebei Province [J]. Biotechnology Bulletin, 2021, 37(4): 35-46. |
[8] | GONG Wei, YU Jian-yuan, ZHANG Xi, SHAN Xiao-yi. Research Progress on Molecular Mechanisms of Nitrate-regulated Plant Flowering and Yield [J]. Biotechnology Bulletin, 2020, 36(8): 162-172. |
[9] | CHEN Min, LIU Xu-ping, ZHAO Liang. Development and Optimization of Serum-Free Medium for High-density Culture of Suspended BHK-21 Cells and High-yield of FMD Virus [J]. Biotechnology Bulletin, 2020, 36(10): 62-71. |
[10] | WANG Wen-xiu, WANG Lei. Research Progress on Maize Dwarf Genes [J]. Biotechnology Bulletin, 2018, 34(11): 22-26. |
[11] | YAN Dong,LUO Zhen-hua,HU You-liang,WANG Jun-cheng,SI Er-jing,REN Pan-rong,YAO Li-rong,LI Bao-chun,MA Xiao-le,MENG Ya-xiong,WANG Hua-jun,. Effects of Different Herbicides on Weed Control and the Growth,Yield and Quality of Highland Barley [J]. Biotechnology Bulletin, 2017, 33(9): 166-171. |
[12] | HOU Xiao-yuan, GU Ru-lin, LIANG Wen-long, XIAO Zi-jun. Research Progress on Production of Tetramethylpyrazine by Fermentation [J]. Biotechnology Bulletin, 2016, 32(1): 58-64. |
[13] | Wang Jungang, Zhao Tingting, Yang Benpeng, Cai Wenwei, Zhang Shuzhen. The Differential Expression of Monosaccharide Transporter Genes in Disease-free Sugarcane Plants [J]. Biotechnology Bulletin, 2015, 31(3): 115-120. |
[14] | Wan Yue, Qi Jiying, Zeng Hong, Han Yang, Han Jing. Optimization of Ultrasonic Assisted Extraction of Lentinan by Response Surface Methodology [J]. Biotechnology Bulletin, 2015, 31(1): 79-85. |
[15] | Guo Ziye, Cai Chuner, Li Chunxia, Geng Zhonglei, Jia Rui, He Peimin, . Pilot Preparation and Optical Properties of Highly Purified Phycoerythrin from Porphyra yezoensis [J]. Biotechnology Bulletin, 2013, 0(3): 192-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||