Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 110-122.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0662
Previous Articles Next Articles
JIANG Min-xuan(), LI Kang, LUO Liang, LIU Jian-xiang(), LU Hai-ping()
Received:
2023-07-12
Online:
2023-11-26
Published:
2023-12-20
Contact:
LIU Jian-xiang, LU Hai-ping
E-mail:3200100463@zju.edu.cn;jianxiangliu@zju.edu.cn;luhaiping@zju.edu.cn
JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 110-122.
生物反应器Bioreactor | 外源蛋白Foreign protein | 载体Vector | 表达宿主Host | 参考文献Reference |
---|---|---|---|---|
烟草叶片生物反应器 Tobacco leaf bioreactor | 乙型肝炎核心抗原Hepatitis B core antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ |
人乳头瘤病毒-8抗原 Human papillomaviruse-8 antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ | |
牛乳头瘤病毒-1抗原 Bovine papillomaviruse-1 antigen | pEAQ-HT-DEST | 烟草叶片Tobacco leaf | [ | |
蓝舌病毒-8抗原Bluetongue virus antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ | |
诺如病毒Norwalk抗原 Norwalk virus antigen | pBI201 | 烟草叶片Tobacco leaf | [ | |
诺如病毒Narita抗原Narita virus antigen | pICH10990 | 烟草叶片Tobacco leaf | [ | |
流感病毒H1N1抗原Influenza virus H5N1 antigen | pCAMBIA2300 | 烟草叶片Tobacco leaf | [ | |
流感病毒H5N1抗原Influenza virus H5N1 antigen | pCAMBIA2300 | 烟草叶片Tobacco leaf | [ | |
新型冠状病毒抗原COVID Covifenz® | Unknown | 烟草叶片Tobacco leaf | Medicago, Canada | |
种子生物反应器 Seed bioreactor | 人血清白蛋白Human serum albumin | pOsPMP | 水稻种子Rice seed | [ |
人抗胰蛋白酶Human alpha-antitrypsin | pOsPMP | 水稻种子Rice seed | [ | |
碱性成纤维细胞生长因子Basic fibroblast growth factor | pOsPMP | 水稻种子Rice seed | [ | |
雪松花粉敏感蛋白CRYJ1/2 Cryptomeria japonica 1/2 | pCSPmALSAg7-GW | 水稻种子Rice seed | [ | |
流感病毒H3N2抗原Influenza virus H3N2 antigen | pHN05 | 玉米种子Maize seed | [ | |
TM-1疫苗 TM-1 gene of Mycoplasma gallisepticum antigen | pPZP211 | 小麦种子Wheat seed | [ | |
抗菌肽Human LL-37 antimicrobial peptide | Unknow | 大麦种子Barley seed | [ | |
人生长激素Human growth hormone | pwrg4803 | 大豆种子Soybean seed | [ | |
单链Fv片段抗体 Single-chain Fv fragment(scFV)antibody | pGEM3zf | 豌豆种子Pea seed | [ | |
其他生物反应器 Other bioreactor | 乙型肝炎疫苗 Hepatitis B virus antigen HBsAg antigen | pG35SHBsAg | 生菜植株Lettuce Seedling | [ |
猪水肿病疫苗Double repeated B subunit of Shiga toxin 2e antigen | pBI121 | 生菜植株Lettuce Seedling | [ | |
鼠疫杆菌抗原F1-V from Yersinia pestis antigen | pBI121 | 生菜植株Lettuce Seedling | [ | |
霍乱疫苗Cholera toxin B subunit antigen | pCAMBIA3300 | 生菜植株Lettuce Seedling | [ | |
严重急性呼吸综合征冠状病毒疫苗SARS-CoV spike protein antigen | pCRII-SI | 生菜植株Lettuce Seedling | [ | |
猪流行性腹泻病毒疫苗 Porcine epidemic diarrhea virus antigen | pMYV514 | 生菜植株Lettuce Seedling | [ | |
大豆凝集素Soybean agglutinin | pBI-101 | 马铃薯块茎Potato tubers | [ | |
人源酪蛋白Human lactoferrin | pPCV701 | 马铃薯块茎Potato tubers | [ | |
人干扰α-2b Human interferon alpha-2b | pCBV16 | 胡萝卜根Carrot root | [ | |
鼠疫杆菌抗原F1-V from Yersinia pestis antigen | pBI-FV | 胡萝卜根Carrot root | [ | |
人血清白蛋白Human serum albumin | pCAMBIA1300 | 烟草BY-2细胞 Tobacco BY-2 cells | [ | |
埃博拉病毒抗体Ebola virus antibody | pCAMBIA1300 | 烟草BY-2细胞 Tobacco BY-2 cells | [ | |
葡萄糖脑苷脂酶Human b-glucocerebrosidase | Unknown | 胡萝卜细胞Carrot cells | [ |
Table 1 Pharmaceutical proteins produced by plant bioreactors
生物反应器Bioreactor | 外源蛋白Foreign protein | 载体Vector | 表达宿主Host | 参考文献Reference |
---|---|---|---|---|
烟草叶片生物反应器 Tobacco leaf bioreactor | 乙型肝炎核心抗原Hepatitis B core antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ |
人乳头瘤病毒-8抗原 Human papillomaviruse-8 antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ | |
牛乳头瘤病毒-1抗原 Bovine papillomaviruse-1 antigen | pEAQ-HT-DEST | 烟草叶片Tobacco leaf | [ | |
蓝舌病毒-8抗原Bluetongue virus antigen | pEAQ-HT | 烟草叶片Tobacco leaf | [ | |
诺如病毒Norwalk抗原 Norwalk virus antigen | pBI201 | 烟草叶片Tobacco leaf | [ | |
诺如病毒Narita抗原Narita virus antigen | pICH10990 | 烟草叶片Tobacco leaf | [ | |
流感病毒H1N1抗原Influenza virus H5N1 antigen | pCAMBIA2300 | 烟草叶片Tobacco leaf | [ | |
流感病毒H5N1抗原Influenza virus H5N1 antigen | pCAMBIA2300 | 烟草叶片Tobacco leaf | [ | |
新型冠状病毒抗原COVID Covifenz® | Unknown | 烟草叶片Tobacco leaf | Medicago, Canada | |
种子生物反应器 Seed bioreactor | 人血清白蛋白Human serum albumin | pOsPMP | 水稻种子Rice seed | [ |
人抗胰蛋白酶Human alpha-antitrypsin | pOsPMP | 水稻种子Rice seed | [ | |
碱性成纤维细胞生长因子Basic fibroblast growth factor | pOsPMP | 水稻种子Rice seed | [ | |
雪松花粉敏感蛋白CRYJ1/2 Cryptomeria japonica 1/2 | pCSPmALSAg7-GW | 水稻种子Rice seed | [ | |
流感病毒H3N2抗原Influenza virus H3N2 antigen | pHN05 | 玉米种子Maize seed | [ | |
TM-1疫苗 TM-1 gene of Mycoplasma gallisepticum antigen | pPZP211 | 小麦种子Wheat seed | [ | |
抗菌肽Human LL-37 antimicrobial peptide | Unknow | 大麦种子Barley seed | [ | |
人生长激素Human growth hormone | pwrg4803 | 大豆种子Soybean seed | [ | |
单链Fv片段抗体 Single-chain Fv fragment(scFV)antibody | pGEM3zf | 豌豆种子Pea seed | [ | |
其他生物反应器 Other bioreactor | 乙型肝炎疫苗 Hepatitis B virus antigen HBsAg antigen | pG35SHBsAg | 生菜植株Lettuce Seedling | [ |
猪水肿病疫苗Double repeated B subunit of Shiga toxin 2e antigen | pBI121 | 生菜植株Lettuce Seedling | [ | |
鼠疫杆菌抗原F1-V from Yersinia pestis antigen | pBI121 | 生菜植株Lettuce Seedling | [ | |
霍乱疫苗Cholera toxin B subunit antigen | pCAMBIA3300 | 生菜植株Lettuce Seedling | [ | |
严重急性呼吸综合征冠状病毒疫苗SARS-CoV spike protein antigen | pCRII-SI | 生菜植株Lettuce Seedling | [ | |
猪流行性腹泻病毒疫苗 Porcine epidemic diarrhea virus antigen | pMYV514 | 生菜植株Lettuce Seedling | [ | |
大豆凝集素Soybean agglutinin | pBI-101 | 马铃薯块茎Potato tubers | [ | |
人源酪蛋白Human lactoferrin | pPCV701 | 马铃薯块茎Potato tubers | [ | |
人干扰α-2b Human interferon alpha-2b | pCBV16 | 胡萝卜根Carrot root | [ | |
鼠疫杆菌抗原F1-V from Yersinia pestis antigen | pBI-FV | 胡萝卜根Carrot root | [ | |
人血清白蛋白Human serum albumin | pCAMBIA1300 | 烟草BY-2细胞 Tobacco BY-2 cells | [ | |
埃博拉病毒抗体Ebola virus antibody | pCAMBIA1300 | 烟草BY-2细胞 Tobacco BY-2 cells | [ | |
葡萄糖脑苷脂酶Human b-glucocerebrosidase | Unknown | 胡萝卜细胞Carrot cells | [ |
[1] |
Fraley RT, Rogers SG, Horsch RB, et al. Expression of bacterial genes in plant cells[J]. Proc Natl Acad Sci USA, 1983, 80(15): 4803-4807.
doi: 10.1073/pnas.80.15.4803 pmid: 6308651 |
[2] |
Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants[J]. Nature, 1989, 342(6245): 76-78.
doi: 10.1038/342076a0 |
[3] |
Peyret H, Lomonossoff GP. When plant virology met Agrobacterium: the rise of the deconstructed clones[J]. Plant Biotechnol J, 2015, 13(8): 1121-1135.
doi: 10.1111/pbi.2015.13.issue-8 URL |
[4] |
Buyel JF. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing[J]. Front Plant Sci, 2019, 9: 1893.
doi: 10.3389/fpls.2018.01893 URL |
[5] |
Schöb H, Kunz C, Meins F Jr. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing[J]. Mol Gen Genet, 1997, 256(5): 581-585.
doi: 10.1007/s004380050604 URL |
[6] |
Kapila J, De Rycke R, Van Montagu M, et al. An Agrobacterium-mediated transient gene expression system for intact leaves[J]. Plant Sci, 1997, 122(1): 101-108.
doi: 10.1016/S0168-9452(96)04541-4 URL |
[7] |
Sainsbury F, Lomonossoff GP. Transient expressions of synthetic biology in plants[J]. Curr Opin Plant Biol, 2014, 19(100): 1-7.
doi: 10.1016/j.pbi.2014.02.003 URL |
[8] |
Holtz BR, Berquist BR, Bennett LD, et al. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals[J]. Plant Biotechnol J, 2015, 13(8): 1180-1190.
doi: 10.1111/pbi.12469 pmid: 26387511 |
[9] |
Marsian J, Lomonossoff GP. Molecular pharming - VLPs made in plants[J]. Curr Opin Biotechnol, 2016, 37: 201-206.
doi: 10.1016/j.copbio.2015.12.007 URL |
[10] |
Fausther-Bovendo H, Kobinger G. Plant-made vaccines and therapeutics[J]. Science, 2021, 373(6556): 740-741.
doi: 10.1126/science.abf5375 pmid: 34385382 |
[11] |
Sainsbury F. Innovation in plant-based transient protein expression for infectious disease prevention and preparedness[J]. Curr Opin Biotechnol, 2020, 61: 110-115.
doi: 10.1016/j.copbio.2019.11.002 URL |
[12] |
Miettinen K, Dong LM, Navrot N, et al. The seco-iridoid pathway from Catharanthus roseus[J]. Nat Commun, 2014, 5: 3606.
doi: 10.1038/ncomms4606 pmid: 24710322 |
[13] |
Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science, 2015, 349(6253): 1224-1228.
doi: 10.1126/science.aac7202 pmid: 26359402 |
[14] |
Rajniak J, Barco B, Clay NK, et al. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence[J]. Nature, 2015, 525(7569): 376-379.
doi: 10.1038/nature14907 |
[15] |
Polturak G, Breitel D, Grossman N, et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants[J]. New Phytol, 2016, 210(1): 269-283.
doi: 10.1111/nph.13796 pmid: 26683006 |
[16] |
Andersen-Ranberg J, Kongstad KT, Nafisi M, et al. Synthesis of C-glucosylated octaketide anthraquinones in Nicotiana benthamiana by using a multispecies-based biosynthetic pathway[J]. Chembiochem, 2017, 18(19): 1893-1897.
doi: 10.1002/cbic.201700331 pmid: 28719729 |
[17] |
Reed J, Osbourn A. Engineering terpenoid production through transient expression in Nicotiana benthamiana[J]. Plant Cell Rep, 2018, 37(10): 1431-1441.
doi: 10.1007/s00299-018-2296-3 |
[18] |
Mechtcheriakova IA, Eldarov MA, Nicholson L, et al. The use of viral vectors to produce hepatitis B virus core particles in plants[J]. J Virol Methods, 2006, 131(1): 10-15.
pmid: 16112207 |
[19] |
Peyret H, Gehin A, Thuenemann EC, et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins[J]. PLoS One, 2015, 10(4): e0120751.
doi: 10.1371/journal.pone.0120751 URL |
[20] |
Matić S, Masenga V, Poli A, et al. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods[J]. Plant Biotechnol J, 2012, 10(4): 410-421.
doi: 10.1111/j.1467-7652.2011.00671.x pmid: 22260326 |
[21] |
Love AJ, Chapman SN, Matic S, et al. In planta production of a candidate vaccine against bovine papillomavirus type 1[J]. Planta, 2012, 236(4): 1305-1313.
doi: 10.1007/s00425-012-1692-0 pmid: 22718313 |
[22] |
Thuenemann EC, Meyers AE, Verwey J, et al. A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles[J]. Plant Biotechnol J, 2013, 11(7): 839-846.
doi: 10.1111/pbi.12076 pmid: 23647743 |
[23] |
Mason HS, Ball JM, Shi JJ, et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice[J]. Proc Natl Acad Sci USA, 1996, 93(11): 5335-5340.
doi: 10.1073/pnas.93.11.5335 pmid: 8643575 |
[24] | Mathew LG, Herbst-Kralovetz MM, Mason HS. Norovirus Narita 104 virus-like particles expressed in Nicotiana benthamiana induce serum and mucosal immune responses[J]. Biomed Res Int, 2014, 2014: 807539. |
[25] |
D'Aoust MA, Lavoie PO, Couture MMJ, et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice[J]. Plant Biotechnol J, 2008, 6(9): 930-940.
doi: 10.1111/pbi.2008.6.issue-9 URL |
[26] |
Landry N, Ward BJ, Trépanier S, et al. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza[J]. PLoS One, 2010, 5(12): e15559.
doi: 10.1371/journal.pone.0015559 URL |
[27] |
He Y, Ning TT, Xie TT, et al. Large-scale production of functional human serum albumin from transgenic rice seeds[J]. Proc Natl Acad Sci USA, 2011, 108(47): 19078-19083.
doi: 10.1073/pnas.1109736108 pmid: 22042856 |
[28] |
Zhang LP, Shi JN, Jiang DM, et al. Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed[J]. J Biotechnol, 2012, 164(2): 300-308.
doi: 10.1016/j.jbiotec.2013.01.008 pmid: 23376844 |
[29] |
An N, Ou JQ, Jiang DM, et al. Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds[J]. Int J Mol Sci, 2013, 14(2): 3556-3567.
doi: 10.3390/ijms14023556 pmid: 23434658 |
[30] |
Takaiwa F, Yang LJ, Takagi H, et al. Development of rice-seed-based oral allergy vaccines containing hypoallergenic Japanese cedar pollen allergen derivatives for immunotherapy[J]. J Agric Food Chem, 2019, 67(47): 13127-13138.
doi: 10.1021/acs.jafc.9b05421 URL |
[31] |
Saito S, Takagi H, Wakasa Y, et al. Safety and efficacy of rice seed-based oral allergy vaccine for Japanese cedar pollinosis in Japanese monkeys[J]. Mol Immunol, 2020, 125: 63-69.
doi: S0161-5890(20)30397-7 pmid: 32650161 |
[32] |
Nahampun HN, Bosworth B, Cunnick J, et al. Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice[J]. Plant Cell Rep, 2015, 34(6): 969-980.
doi: 10.1007/s00299-015-1758-0 pmid: 25677970 |
[33] | Shi Y, Habibi P, Haq ANU, et al. Seed-based system for cost-effective production of vaccine against chronic respiratory disease in chickens[J]. Mol Biotechnol, 2023, 65(4): 570-580. |
[34] |
Mirzaee M, Holásková E, Mičúchová A, et al. Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants[J]. Antibiotics, 2021, 10(8): 898.
doi: 10.3390/antibiotics10080898 URL |
[35] |
Russell DA, Spatola LA, Dian T, et al. Host limits to accurate human growth hormone production in multiple plant systems[J]. Biotechnol Bioeng, 2005, 89(7): 775-782.
pmid: 15696512 |
[36] |
Perrin Y, Vaquero C, Gerrard I, et al. Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment(scFV)antibody used in cancer diagnosis and therapy[J]. Mol Breed, 2000, 6(4): 345-352.
doi: 10.1023/A:1009657701588 URL |
[37] |
Marcondes J, Hansen E. Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg[J]. Braz J Infect Dis, 2008, 12(6): 469-471.
doi: S1413-86702008000600004 pmid: 19287831 |
[38] |
Matsui T, Takita E, Sato T, et al. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease[J]. Transgenic Res, 2011, 20(4): 735-748.
doi: 10.1007/s11248-010-9455-9 URL |
[39] |
Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, et al. Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague[J]. Planta, 2010, 232(2): 409-416.
doi: 10.1007/s00425-010-1176-z pmid: 20461403 |
[40] |
Kim YS, Kim BG, Kim TG, et al. Expression of a cholera toxin B subunit in transgenic lettuce(Lactucasativa L.) using Agrobac-terium-mediated transformation system[J]. Plant Cell Tissue Organ Cult, 2006, 87(2): 203-210.
doi: 10.1007/s11240-006-9156-5 URL |
[41] |
Li HY, Ramalingam S, Chye ML. Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines[J]. Exp Biol Med, 2006, 231(8): 1346-1352.
doi: 10.1177/153537020623100808 URL |
[42] |
Huy NX, Yang MS, Kim TG. Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce(Lactuca sativa L.)[J]. Mol Biotechnol, 2011, 48(3): 201-209.
doi: 10.1007/s12033-010-9359-1 URL |
[43] |
Tremblay R, Feng M, Menassa R, et al. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems[J]. Transgenic Res, 2011, 20(2): 345-356.
doi: 10.1007/s11248-010-9419-0 pmid: 20559869 |
[44] |
Chong DK, Langridge WH. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants[J]. Transgenic Res, 2000, 9(1): 71-78.
pmid: 10853271 |
[45] |
Luchakivskaya Y, Kishchenko O, Gerasymenko I, et al. High-level expression of human interferon alpha-2b in transgenic carrot(Daucus carota L.) plants[J]. Plant Cell Rep, 2011, 30(3): 407-415.
doi: 10.1007/s00299-010-0942-5 pmid: 21046110 |
[46] | Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, et al. Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice[J]. J Plant Physiol, 2011, 168(2): 174-180. |
[47] |
Sun QY, Ding LW, Lomonossoff GP, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture[J]. J Biotechnol, 2011, 155(2): 164-172.
doi: 10.1016/j.jbiotec.2011.06.033 URL |
[48] |
Qiu XG, Wong G, Audet J, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp[J]. Nature, 2014, 514(7520): 47-53.
doi: 10.1038/nature13777 |
[49] |
Mor TS. Molecular pharming's foot in the FDA's door: Protalix's trailblazing story[J]. Biotechnol Lett, 2015, 37(11): 2147-2150.
doi: 10.1007/s10529-015-1908-z pmid: 26149580 |
[50] |
Zhu QL, Tan JT, Liu YG. Molecular farming using transgenic rice endosperm[J]. Trends Biotechnol, 2022, 40(10): 1248-1260.
doi: 10.1016/j.tibtech.2022.04.002 pmid: 35562237 |
[51] |
Ou JQ, Guo ZB, Shi JN, et al. Transgenic rice endosperm as a bioreactor for molecular pharming[J]. Plant Cell Rep, 2014, 33(4): 585-594.
doi: 10.1007/s00299-013-1559-2 pmid: 24413763 |
[52] |
Wakasa Y, Takagi H, Hirose S, et al. Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis[J]. Plant Biotechnol J, 2013, 11(1): 66-76.
doi: 10.1111/pbi.12007 pmid: 23066780 |
[53] |
Liu WX, Liu HL, Qu LQ. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds[J]. Theor Appl Genet, 2013, 126(9): 2289-2297.
doi: 10.1007/s00122-013-2135-4 pmid: 23748707 |
[54] |
Yin ZJ, Liu HL, Dong XB, et al. Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene[J]. Mol Breed, 2014, 33(4): 987-996.
doi: 10.1007/s11032-013-0014-y URL |
[55] |
Wang XT, Karki U, Abeygunaratne H, et al. Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells[J]. Process Biochem, 2021, 100: 39-48.
doi: 10.1016/j.procbio.2020.09.029 pmid: 33071562 |
[56] |
Diamos AG, Mason HS. Chimeric 3' flanking regions strongly enhance gene expression in plants[J]. Plant Biotechnol J, 2018, 16(12): 1971-1982.
doi: 10.1111/pbi.12931 pmid: 29637682 |
[57] |
Rosenthal SH, Diamos AG, Mason HS. An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves[J]. Plant Mol Biol, 2018, 96(4-5): 429-443.
doi: 10.1007/s11103-018-0708-y pmid: 29429129 |
[58] |
Peyret H, Brown JKM, Lomonossoff GP. Improving plant transient expression through the rational design of synthetic 5' and 3' untranslated regions[J]. Plant Methods, 2019, 15: 108.
doi: 10.1186/s13007-019-0494-9 pmid: 31548848 |
[59] |
Yanez RJR, Lamprecht R, Granadillo M, et al. LALF32-51-E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves[J]. Plant Biotechnol J, 2018, 16(2): 628-637.
doi: 10.1111/pbi.2018.16.issue-2 URL |
[60] |
Thomas DR, Walmsley AM. Improved expression of recombinant plant-made hEGF[J]. Plant Cell Rep, 2014, 33(11): 1801-1814.
doi: 10.1007/s00299-014-1658-8 pmid: 25048022 |
[61] |
Jutras PV, Dodds I, van der Hoorn RA. Proteases of Nicotiana benthamiana: an emerging battle for molecular farming[J]. Curr Opin Biotechnol, 2020, 61: 60-65.
doi: 10.1016/j.copbio.2019.10.006 URL |
[62] |
Grosse-Holz F, Kelly S, Blaskowski S, et al. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire[J]. Plant Biotechnol J, 2018, 16(5): 1068-1084.
doi: 10.1111/pbi.12852 pmid: 29055088 |
[63] | Robert S, Jutras PV, Khalf M, et al. Companion protease inhibitors for the in situ protection of recombinant proteins in plants[J]. Methods Mol Biol, 2016, 1385: 115-126. |
[64] |
Jutras PV, Marusic C, Lonoce C, et al. An accessory protease inhibitor to increase the yield and quality of a tumour-targeting MAb in Nicotiana benthamiana leaves[J]. PLoS One, 2016, 11(11): e0167086.
doi: 10.1371/journal.pone.0167086 URL |
[65] |
Jutras PV, Grosse-Holz F, Kaschani F, et al. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana[J]. Plant Biotechnol J, 2019, 17(8): 1670-1678.
doi: 10.1111/pbi.2019.17.issue-8 URL |
[66] |
Sainsbury F, Jutras PV, Vorster J, et al. A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants[J]. Front Plant Sci, 2016, 7: 141.
doi: 10.3389/fpls.2016.00141 pmid: 26913045 |
[67] |
Grosse-Holz F, Madeira L, Zahid MA, et al. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana[J]. Plant Biotechnol J, 2018, 16(10): 1797-1810.
doi: 10.1111/pbi.12916 pmid: 29509983 |
[68] |
Hatsugai N, Kuroyanagi M, Yamada K, et al. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death[J]. Science, 2004, 305(5685): 855-858.
doi: 10.1126/science.1099859 pmid: 15297671 |
[69] |
Zauner FB, Dall E, Regl C, et al. Crystal structure of plant legumain reveals a unique two-chain state with pH-dependent activity regulation[J]. Plant Cell, 2018, 30(3): 686-699.
doi: 10.1105/tpc.17.00963 URL |
[70] |
Gu C, Shabab M, Strasser R, et al. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana[J]. PLoS One, 2012, 7(3): e32422.
doi: 10.1371/journal.pone.0032422 URL |
[71] |
Jutras PV, D’Aoust MA, Couture MMJ, et al. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants[J]. Biotechnol J, 2015, 10(9): 1478-1486.
doi: 10.1002/biot.201500056 pmid: 25914077 |
[72] |
Jutras PV, Goulet MC, Lavoie PO, et al. Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH-dependent[J]. Plant Biotechnol J, 2018, 16(11): 1928-1938.
doi: 10.1111/pbi.12928 pmid: 29618167 |
[73] |
Mandal MK, Ahvari H, Schillberg S, et al. Tackling unwanted proteolysis in plant production hosts used for molecular farming[J]. Front Plant Sci, 2016, 7: 267.
doi: 10.3389/fpls.2016.00267 pmid: 27014293 |
[74] |
Mandal MK, Fischer R, Schillberg S, et al. Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2(BY-2)suspension cells[J]. Biotechnol J, 2014, 9(8): 1065-1073.
doi: 10.1002/biot.201300424 pmid: 24828029 |
[75] |
Duwadi K, Chen L, Menassa R, et al. Identification, characterization and down-regulation of cysteine protease genes in tobacco for use in recombinant protein production[J]. PLoS One, 2015, 10(7): e0130556.
doi: 10.1371/journal.pone.0130556 URL |
[76] |
Kallolimath S, Castilho A, Strasser R, et al. Engineering of complex protein sialylation in plants[J]. Proc Natl Acad Sci USA, 2016, 113(34): 9498-9503.
doi: 10.1073/pnas.1604371113 pmid: 27444013 |
[77] |
Jeong IS, Lee SM, Bonkhofer F, et al. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies[J]. Plant J, 2018, 94(1): 131-145.
doi: 10.1111/tpj.2018.94.issue-1 URL |
[78] |
Strasser R. Plant protein glycosylation[J]. Glycobiology, 2016, 26(9): 926-939.
pmid: 26911286 |
[79] |
Castilho A, Beihammer G, Pfeiffer C, et al. An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana[J]. Plant Biotechnol J, 2018, 16(10): 1700-1709.
doi: 10.1111/pbi.2018.16.issue-10 URL |
[80] |
Strasser R, Stadlmann J, Schähs M, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure[J]. Plant Biotechnol J, 2008, 6(4): 392-402.
doi: 10.1111/j.1467-7652.2008.00330.x pmid: 18346095 |
[81] |
Jansing J, Sack M, Augustine SM, et al. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1, 2-xylose and core α-1, 3-fucose[J]. Plant Biotechnol J, 2019, 17(2): 350-361.
doi: 10.1111/pbi.12981 pmid: 29969180 |
[82] |
Parsons J, Altmann F, Arrenberg CK, et al. Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants[J]. Plant Biotechnol J, 2012, 10(7): 851-861.
doi: 10.1111/j.1467-7652.2012.00704.x pmid: 22621344 |
[83] |
Shin YJ, Castilho A, Dicker M, et al. Reduced paucimannosidic N-glycan formation by suppression of a specific β-hexosaminidase from Nicotiana benthamiana[J]. Plant Biotechnol J, 2017, 15(2): 197-206.
doi: 10.1111/pbi.2017.15.issue-2 URL |
[84] |
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants[J]. Plant Cell, 2010, 22(9): 2930-2942.
doi: 10.1105/tpc.110.078154 URL |
[85] |
杨正婷, 刘建祥. 植物内质网胁迫应答研究进展[J]. 生物技术通报, 2016, 32(10): 84-96.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.005 |
Yang ZT, Liu JX. Endoplasmic reticulum stress response in plants[J]. Biotechnol Bull, 2016, 32(10): 84-96. | |
[86] |
Sun JL, Li JY, Wang MJ, et al. Protein quality control in plant organelles: current progress and future perspectives[J]. Mol Plant, 2021, 14(1): 95-114.
doi: 10.1016/j.molp.2020.10.011 URL |
[87] |
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control[J]. Science, 2016, 353(6294): aac4354.
doi: 10.1126/science.aac4354 URL |
[88] |
De Wilde K, De Buck S, Vanneste K, et al. Recombinant antibody production in Arabidopsis seeds triggers an unfolded protein response[J]. Plant Physiol, 2013, 161(2): 1021-1033.
doi: 10.1104/pp.112.209718 URL |
[89] |
Nuttall J, Vine N, Hadlington JL, et al. ER-resident chaperone interactions with recombinant antibodies in transgenic plants[J]. Eur J Biochem, 2002, 269(24): 6042-6051.
doi: 10.1046/j.1432-1033.2002.03302.x pmid: 12473100 |
[90] |
Zhang LP, Jiang DM, Pang JL, et al. The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death[J]. Plant Mol Biol, 2013, 83(1-2): 153-161.
doi: 10.1007/s11103-013-0056-x pmid: 23564402 |
[91] | Wakasa Y, Yasuda H, Takaiwa F. Secretory type of recombinant thioredoxin h induces ER stress in endosperm cells of transgenic rice[J]. J Plant Physiol, 2013, 170(2): 202-210. |
[92] |
Klabunde J, Kleebank S, Piontek M, et al. Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha[J]. FEMS Yeast Res, 2007, 7(7): 1168-1180.
pmid: 17617219 |
[93] |
Song Y, Sata J, Saito A, et al. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes[J]. J Biochem, 2001, 130(6): 757-764.
doi: 10.1093/oxfordjournals.jbchem.a003046 pmid: 11726275 |
[94] | Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae[J]. Biotechnology(N Y), 1994, 12(4): 381-384. |
[95] |
Vad R, Nafstad E, Dahl LA, et al. Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone[J]. J Biotechnol, 2005, 116(3): 251-260.
doi: 10.1016/j.jbiotec.2004.12.004 URL |
[96] |
Powers SL, Robinson AS. PDI improves secretion of redox-inactive beta-glucosidase[J]. Biotechnol Prog, 2007, 23(2): 364-369.
doi: 10.1021/bp060287p URL |
[97] |
Damasceno LM, Anderson KA, Ritter G, et al. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris[J]. Appl Microbiol Biotechnol, 2007, 74(2): 381-389.
doi: 10.1007/s00253-006-0652-7 pmid: 17051412 |
[98] |
Butz JA, Niebauer RT, Robinson AS. Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast[J]. Biotechnol Bioeng, 2003, 84(3): 292-304.
pmid: 12968283 |
[99] |
Wakasa Y, Hayashi S, Takaiwa F. Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice[J]. Planta, 2012, 236(5): 1519-1527.
doi: 10.1007/s00425-012-1714-y pmid: 22824965 |
[100] |
Liu JX, Srivastava R, Che P, et al. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28[J]. Plant Cell, 2007, 19(12): 4111-4119.
doi: 10.1105/tpc.106.050021 URL |
[101] |
Deng Y, Humbert S, Liu JX, et al. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(17): 7247-7252.
doi: 10.1073/pnas.1102117108 pmid: 21482766 |
[102] |
Nagashima Y, Mishiba KI, Suzuki E, et al. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor[J]. Sci Rep, 2011, 1: 29.
doi: 10.1038/srep00029 pmid: 22355548 |
[103] |
Hayashi S, Wakasa Y, Takahashi H, et al. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice[J]. Plant J, 2012, 69(6): 946-956.
doi: 10.1111/tpj.2012.69.issue-6 URL |
[104] |
Lu SJ, Yang ZT, Sun L, et al. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice(Oryza sativa L.) involved in ER stress responses[J]. Mol Plant, 2012, 5(2): 504-514.
doi: 10.1093/mp/ssr115 pmid: 22199238 |
[105] |
Srivastava R, Chen YN, Deng Y, et al. Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions[J]. Plant J, 2012, 70(6): 1033-1042.
doi: 10.1111/tpj.2012.70.issue-6 URL |
[106] |
Sun L, Lu SJ, Zhang SS, et al. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis[J]. Mol Plant, 2013, 6(5): 1605-1615.
doi: 10.1093/mp/sst059 pmid: 23558471 |
[107] |
Humbert S, Zhong SH, Deng Y, et al. Alteration of the bZIP60/IRE1 pathway affects plant response to ER stress in Arabidopsis thaliana[J]. PLoS One, 2012, 7(6): e39023.
doi: 10.1371/journal.pone.0039023 URL |
[108] |
Valkonen M, Ward M, Wang HM, et al. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response[J]. Appl Environ Microbiol, 2003, 69(12): 6979-6986.
doi: 10.1128/AEM.69.12.6979-6986.2003 URL |
[109] |
Valkonen M, Penttilä M, Saloheimo M. Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2003, 69(4): 2065-2072.
doi: 10.1128/AEM.69.4.2065-2072.2003 URL |
[110] |
Cain K, Peters S, Hailu HN, et al. A CHO cell line engineered to express XBP1 and ERO1-Lα has increased levels of transient protein expression[J]. Biotechnol Prog, 2013, 29(3): 697-706.
doi: 10.1002/btpr.v29.3 URL |
[111] |
Tigges M, Fussenegger M. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells[J]. Metab Eng, 2006, 8(3): 264-272.
pmid: 16635796 |
[1] | LIU Rong-rong. Research and Development Progress on Plant-made Pharmaceuticals [J]. Biotechnology Bulletin, 2017, 33(9): 17-22. |
[2] | YANG Jia-wei,CHENG Xiao-ling,LONG Chao-kang. Genetic Transformation of Human IL-12 Driven by Tuber-specific Promoter from Potato(Solanum tuberosum) [J]. Biotechnology Bulletin, 2016, 32(5): 220-225. |
[3] | Chen Jinmei, Jiang Luyi, Hong Zhi. Present Situation and Prospects on Application of Plant Bioreactor in Pharmaceutical [J]. Biotechnology Bulletin, 2015, 31(10): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||