Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 143-151.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0824
Previous Articles Next Articles
XIAO Xiao-jun1,2(), CHEN Ming2, HAN De-peng2, YU Pao-lan2, ZHENG Wei2, XIAO Guo-bin2, ZHOU Qing-hong1(), ZHOU Hui-wen3()
Received:
2022-07-04
Online:
2023-03-26
Published:
2023-04-10
XIAO Xiao-jun, CHEN Ming, HAN De-peng, YU Pao-lan, ZHENG Wei, XIAO Guo-bin, ZHOU Qing-hong, ZHOU Hui-wen. Genome Wide Association Analysis of Thousand Seed Weight in Brassica napus L.[J]. Biotechnology Bulletin, 2023, 39(3): 143-151.
性状 Trait | 环境 Environment | 平均值±标准差 Mean±SD | 最小值 Min | 50%分位数 50% quantile | 最大值 Max | 变异系数 CV /% | Kolmogorov-Smirnov |
---|---|---|---|---|---|---|---|
每角果粒数 SPS | JXAU | 17.23±2.89 | 7.40 | 17.41 | 24.48 | 16.77 | P=0.729 58 |
JXIRS | 15.79±3.36 | 5.54 | 15.88 | 27.78 | 21.29 | P=0.346 01 |
Table 1 Statistical analysis on SPS(seed number per silique)
性状 Trait | 环境 Environment | 平均值±标准差 Mean±SD | 最小值 Min | 50%分位数 50% quantile | 最大值 Max | 变异系数 CV /% | Kolmogorov-Smirnov |
---|---|---|---|---|---|---|---|
每角果粒数 SPS | JXAU | 17.23±2.89 | 7.40 | 17.41 | 24.48 | 16.77 | P=0.729 58 |
JXIRS | 15.79±3.36 | 5.54 | 15.88 | 27.78 | 21.29 | P=0.346 01 |
变异来源Source of variation | 自由度DF(degree of freedom) | 方差及占总方差的比例MS(SS/SST)/% |
---|---|---|
区组 Block | 1 | 52.12**(7.02) |
处理间 Treatment | 299 | 20.66**(2.78) |
环境 Environment/E | 1 | 621.99**(83.80) |
基因型 Genotype /G | 299 | 26.56**(3.58) |
基因型×环境 G×E | 299 | 12.75*(1.72) |
误差 Error | 599 | 8.17(1.10) |
Table 2 Variance analysis of SPS in two places
变异来源Source of variation | 自由度DF(degree of freedom) | 方差及占总方差的比例MS(SS/SST)/% |
---|---|---|
区组 Block | 1 | 52.12**(7.02) |
处理间 Treatment | 299 | 20.66**(2.78) |
环境 Environment/E | 1 | 621.99**(83.80) |
基因型 Genotype /G | 299 | 26.56**(3.58) |
基因型×环境 G×E | 299 | 12.75*(1.72) |
误差 Error | 599 | 8.17(1.10) |
环境Environment | 染色体 Chromosome | 位置 Locus | P值P value | 贡献率 R2/% | GLM | MLM |
---|---|---|---|---|---|---|
JXAU | A04 | 11830197 | 2.40E-06 | 11.07 | ● | |
A05 | 10733464 | 2.32E-06 | 8.65 | ● | ||
A09 | 16100373 | 1.11E-06 | 8.87 | ● | ||
A09 | 16100374 | 1.55E-06 | 8.60 | ● | ||
A09 | 16100386 | 1.65E-06 | 8.56 | ● | ||
A09 | 16100422 | 1.39E-06 | 8.67 | ● | ||
A09 | 16100439 | 1.35E-06 | 8.76 | ● | ||
A09 | 16299217 | 1.68E-06 | 9.45 | ● | ||
A09 | 16299389 | 1.49E-06 | 9.71 | ● | ||
A09 | 16299462 | 1.13E-06 | 9.87 | ● | ||
A09 | 16299495 | 4.31E-07 | 10.38 | ● | ||
A09 | 16299626 | 4.29E-08 | 12.92 | ● | ||
A09 | 16303740 | 3.33E-07 | 9.69 | ● | ||
A09 | 16303768 | 1.98E-06 | 8.59 | ● | ||
A09 | 16366473 | 2.84E-06 | 9.82 | ● | ||
A09 | 17453710 | 1.10E-07 | 17.80 | ● | ||
A09 | 17453729 | 1.29E-07 | 17.42 | ● | ||
A09 | 17453891 | 4.02E-07 | 16.69 | ● | ||
A09 | 17471305 | 2.81E-06 | 8.66 | ● | ||
A09 | 17581807 | 3.44E-06 | 9.45 | ● | ||
A09 | 17581835 | 3.73E-06 | 9.77 | ● | ||
A09 | 17582057 | 3.16E-06 | 8.96 | ● | ||
C02 | 27389727 | 2.58E-06 | 7.91 | ● | ||
C02 | 27389750 | 1.90E-06 | 8.06 | ● | ||
C02 | 27389775 | 2.39E-06 | 7.93 | ● | ||
C02 | 34901810 | 4.35E-06 | 8.04 | ● | ||
C03 | 18955107 | 4.53E-06 | 8.52 | ● | ||
C03 | 21284972 | 3.40E-08-4.29E-06 | 10.85-8.9 | ● | ○ | |
C03 | 21342259 | 4.40E-06 | 7.67 | ● | ||
C07 | 32557367 | 4.69E-06 | 7.48 | ● | ||
C07 | 42323087 | 8.09E-07 | 14.77 | ● | ||
C07 | 42323117 | 2.00E-07-3.28E-06 | 15.23-14.05 | ● | ○ | |
C07 | 42323137 | 3.24E-06 | 12.97 | ● | ||
C07 | 42323279 | 4.80E-06 | 11.83 | ● | ||
C07 | 42323280 | 4.90E-06 | 11.88 | ● | ||
C08 | 27721260 | 3.47E-06 | 8.13 | ● | ||
C08 | 37461613 | 2.43E-06 | 11.73 | ● | ||
JXIRS | A05 | 659981 | 5.92E-07-4.95E-06 | 16.00-16.75 | ● | ○ |
A07 | 7482038 | 3.89E-06 | 9.63 | ● |
Table 3 SNPs loci significantly associated with SPS
环境Environment | 染色体 Chromosome | 位置 Locus | P值P value | 贡献率 R2/% | GLM | MLM |
---|---|---|---|---|---|---|
JXAU | A04 | 11830197 | 2.40E-06 | 11.07 | ● | |
A05 | 10733464 | 2.32E-06 | 8.65 | ● | ||
A09 | 16100373 | 1.11E-06 | 8.87 | ● | ||
A09 | 16100374 | 1.55E-06 | 8.60 | ● | ||
A09 | 16100386 | 1.65E-06 | 8.56 | ● | ||
A09 | 16100422 | 1.39E-06 | 8.67 | ● | ||
A09 | 16100439 | 1.35E-06 | 8.76 | ● | ||
A09 | 16299217 | 1.68E-06 | 9.45 | ● | ||
A09 | 16299389 | 1.49E-06 | 9.71 | ● | ||
A09 | 16299462 | 1.13E-06 | 9.87 | ● | ||
A09 | 16299495 | 4.31E-07 | 10.38 | ● | ||
A09 | 16299626 | 4.29E-08 | 12.92 | ● | ||
A09 | 16303740 | 3.33E-07 | 9.69 | ● | ||
A09 | 16303768 | 1.98E-06 | 8.59 | ● | ||
A09 | 16366473 | 2.84E-06 | 9.82 | ● | ||
A09 | 17453710 | 1.10E-07 | 17.80 | ● | ||
A09 | 17453729 | 1.29E-07 | 17.42 | ● | ||
A09 | 17453891 | 4.02E-07 | 16.69 | ● | ||
A09 | 17471305 | 2.81E-06 | 8.66 | ● | ||
A09 | 17581807 | 3.44E-06 | 9.45 | ● | ||
A09 | 17581835 | 3.73E-06 | 9.77 | ● | ||
A09 | 17582057 | 3.16E-06 | 8.96 | ● | ||
C02 | 27389727 | 2.58E-06 | 7.91 | ● | ||
C02 | 27389750 | 1.90E-06 | 8.06 | ● | ||
C02 | 27389775 | 2.39E-06 | 7.93 | ● | ||
C02 | 34901810 | 4.35E-06 | 8.04 | ● | ||
C03 | 18955107 | 4.53E-06 | 8.52 | ● | ||
C03 | 21284972 | 3.40E-08-4.29E-06 | 10.85-8.9 | ● | ○ | |
C03 | 21342259 | 4.40E-06 | 7.67 | ● | ||
C07 | 32557367 | 4.69E-06 | 7.48 | ● | ||
C07 | 42323087 | 8.09E-07 | 14.77 | ● | ||
C07 | 42323117 | 2.00E-07-3.28E-06 | 15.23-14.05 | ● | ○ | |
C07 | 42323137 | 3.24E-06 | 12.97 | ● | ||
C07 | 42323279 | 4.80E-06 | 11.83 | ● | ||
C07 | 42323280 | 4.90E-06 | 11.88 | ● | ||
C08 | 27721260 | 3.47E-06 | 8.13 | ● | ||
C08 | 37461613 | 2.43E-06 | 11.73 | ● | ||
JXIRS | A05 | 659981 | 5.92E-07-4.95E-06 | 16.00-16.75 | ● | ○ |
A07 | 7482038 | 3.89E-06 | 9.63 | ● |
基因ID Gene ID | SNP 标记 SNP marker | 起点 Gene start | 终点 Gene end | SNP 位置 SNP position | 拟南芥基因号Arabidopsis gene ID | 拟南芥同源基因 Arabidopsis alias |
---|---|---|---|---|---|---|
BnaA04g14020D | Bn-A04-11830197 | 11833699 | 11837146 | 11830197 | AT2G23950 | CIK[ |
BnaA09g23540D | Bn-A09-16100373 | 16174364 | 16174915 | 16100373 | AT1G33760 | ERF022[ |
BnaA09g24700D | Bn-A09-17471305 | 17487033 | 17488935 | 17471305 | AT2G44190 | EDE1[ |
BnaA09g24710D | Bn-A09-17471305 | 17497234 | 17500297 | 17471305 | AT1G31930 | XLG3[ |
BnaA09g24730D | Bn-A09-17471305 | 17523243 | 17523516 | 17471305 | AT1G31870 | AtBUD13[ |
BnaA09g24750D | Bn-A09-17471305 | 17541993 | 17543181 | 17471305 | AT4G34200 | EDA9[ |
BnaA09g24870D | Bn-A09-17581807 | 17647230 | 17648587 | 17581807 | AT1G31817 | NFD3[ |
BnaC03g34930D | Bn-C03-21284972 | 21219565 | 21222207 | 21284972 | AT3G06830 | PME[ |
BnaC03g34950D | Bn-C03-21284972 | 21230822 | 21235581 | 21284972 | AT3G06860 | MFP2[ |
BnaC03g35050D | Bn-C03-21284972 | 21284496 | 21287359 | 21284972 | AT3G07050 | NSN1[ |
BnaC03g35090D | Bn-C03-21284972 | 21319583 | 21320097 | 21284972 | AT5G52820 | NLE[ |
BnaC03g35120D | Bn-C03-21284972 | 21340067 | 21357495 | 21284972 | AT3G07160 | GSL10[ |
BnaC03g35200D | Bn-C03-21284972 | 21380681 | 21384039 | 21284972 | AT3G07330 | CSLC6[ |
BnaC07g26700D | Bn-C07-32557367 | 32520784 | 32523680 | 32557367 | AT5G48720 | XRI1[ |
BnaC07g26770D | Bn-C07-32557367 | 32544716 | 32546391 | 32557367 | AT5G48820 | ICK6/KRP3[ |
BnaC07g27010D | Bn-C07-32557367 | 32640586 | 32647933 | 32557367 | AT5G49030 | OVA2[ |
BnaC08g26210D | Bn-C08-27721260 | 27683429 | 27686693 | 27721260 | AT3G55400 | OVA1[ |
BnaC08g26310D | Bn-C08-27721260 | 27766812 | 27771782 | 27721260 | AT3G55480 | AP-3[ |
BnaC08g44100D | Bn-C08-37461613 | 37532295 | 37541481 | 37461613 | AT1G05230 | HDG2[ |
Table 4 Candidate genes related with SPS in the intervals of significant associated SNP markers
基因ID Gene ID | SNP 标记 SNP marker | 起点 Gene start | 终点 Gene end | SNP 位置 SNP position | 拟南芥基因号Arabidopsis gene ID | 拟南芥同源基因 Arabidopsis alias |
---|---|---|---|---|---|---|
BnaA04g14020D | Bn-A04-11830197 | 11833699 | 11837146 | 11830197 | AT2G23950 | CIK[ |
BnaA09g23540D | Bn-A09-16100373 | 16174364 | 16174915 | 16100373 | AT1G33760 | ERF022[ |
BnaA09g24700D | Bn-A09-17471305 | 17487033 | 17488935 | 17471305 | AT2G44190 | EDE1[ |
BnaA09g24710D | Bn-A09-17471305 | 17497234 | 17500297 | 17471305 | AT1G31930 | XLG3[ |
BnaA09g24730D | Bn-A09-17471305 | 17523243 | 17523516 | 17471305 | AT1G31870 | AtBUD13[ |
BnaA09g24750D | Bn-A09-17471305 | 17541993 | 17543181 | 17471305 | AT4G34200 | EDA9[ |
BnaA09g24870D | Bn-A09-17581807 | 17647230 | 17648587 | 17581807 | AT1G31817 | NFD3[ |
BnaC03g34930D | Bn-C03-21284972 | 21219565 | 21222207 | 21284972 | AT3G06830 | PME[ |
BnaC03g34950D | Bn-C03-21284972 | 21230822 | 21235581 | 21284972 | AT3G06860 | MFP2[ |
BnaC03g35050D | Bn-C03-21284972 | 21284496 | 21287359 | 21284972 | AT3G07050 | NSN1[ |
BnaC03g35090D | Bn-C03-21284972 | 21319583 | 21320097 | 21284972 | AT5G52820 | NLE[ |
BnaC03g35120D | Bn-C03-21284972 | 21340067 | 21357495 | 21284972 | AT3G07160 | GSL10[ |
BnaC03g35200D | Bn-C03-21284972 | 21380681 | 21384039 | 21284972 | AT3G07330 | CSLC6[ |
BnaC07g26700D | Bn-C07-32557367 | 32520784 | 32523680 | 32557367 | AT5G48720 | XRI1[ |
BnaC07g26770D | Bn-C07-32557367 | 32544716 | 32546391 | 32557367 | AT5G48820 | ICK6/KRP3[ |
BnaC07g27010D | Bn-C07-32557367 | 32640586 | 32647933 | 32557367 | AT5G49030 | OVA2[ |
BnaC08g26210D | Bn-C08-27721260 | 27683429 | 27686693 | 27721260 | AT3G55400 | OVA1[ |
BnaC08g26310D | Bn-C08-27721260 | 27766812 | 27771782 | 27721260 | AT3G55480 | AP-3[ |
BnaC08g44100D | Bn-C08-37461613 | 37532295 | 37541481 | 37461613 | AT1G05230 | HDG2[ |
[1] | 王汉中. 我国油菜产业发展的历史回顾与展望[J]. 中国油料作物学报, 2010, 32(2): 300-302. |
Wang HZ. Review and future development of rapeseed industry in China[J]. Chin J Oil Crop Sci, 2010, 32(2): 300-302. | |
[2] | 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5): 613-617. |
Wang HZ. New-demand oriented oilseed rape industry developing strategy[J]. Chin J Oil Crop Sci, 2018, 40(5): 613-617. | |
[3] | 刘成, 冯中朝, 肖唐华, 等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报, 2019, 41(4): 485-489. |
Liu C, Feng ZC, Xiao TH, et al. Development, potential and adaptation of Chinese rapeseed industry[J]. Chin J Oil Crop Sci, 2019, 41(4): 485-489. | |
[4] |
Van CW. Yield enhancement genes: seeds for growth[J]. Curr Opin Biotechnol, 2005, 16(2): 147-153.
doi: 10.1016/j.copbio.2005.03.002 URL |
[5] |
Chen W, Zhang Y, Liu XP, et al. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus)using DH and immortalized F2 populations[J]. Theor Appl Genet, 2007, 115(6): 849-858.
doi: 10.1007/s00122-007-0613-2 pmid: 17665168 |
[6] |
Fan CC, Cai GQ, Qin J, et al. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus[J]. Theor Appl Genet, 2010, 121(7): 1289-1301.
doi: 10.1007/s00122-010-1388-4 URL |
[7] | Zhu LX, Zhang DX, Fu TD, et al. Analysis of yield and disease resistance traits of new winter rapeseed varieties over the past twenty years in China[J]. Agric Sci & Technol, 2011, 12(6): 842-846. |
[8] | 易斌, 陈伟, 马朝芝, 等. 甘蓝型油菜产量及相关性状的QTL分析[J]. 作物学报, 2006, 32(5): 676-682. |
Yi B, Chen W, Ma CZ, et al. Mapping of quantitative trait loci for yield and yield components in Brassica napus L[J]. Acta Agron Sin, 2006, 32(5): 676-682. | |
[9] | 张月立. 甘蓝型油菜含油量、角果长和每果粒数的QTL定位[D]. 武汉: 华中农业大学, 2013. |
Zhang YL. Qtl mapping for oil content, silique length and seed number per silique in Brassica napus L[D]. Wuhan: Huazhong Agricultural University, 2013. | |
[10] | 赵卫国, 王灏, 穆建新, 等. 甘蓝型油菜千粒重性状的QTL定位分析[J]. 西北植物学报, 2017, 37(3): 478-485. |
Zhao WG, Wang H, Mu JX, et al. Localization of thousand seed weight trait in Brassica napus by quantitative trait locus analysis[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(3): 478-485. | |
[11] |
孙程明, 陈松, 彭琦, 等. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9): 1303-1310.
doi: 10.3724/SP.J.1006.2019.94021 |
Sun CM, Chen S, Peng Q, et al. Genome-wide association study of silique length in rapeseed(Brassica napus L.)[J]. Acta Agron Sin, 2019, 45(9): 1303-1310. | |
[12] | 王茹梦, 刘忠松. 甘蓝型油菜开花期全基因组关联分析及开花基因标记开发[J]. 分子植物育种, 2021, 19(10): 3329-3338. |
Wang RM, Liu ZS. Genome-wide association analysis of flowering time and development of flowering gene markers in Brassica napus L[J]. Mol Plant Breed, 2021, 19(10): 3329-3338. | |
[13] |
周庆红, 周灿, 郑伟, 等. 甘蓝型油菜角果长度全基因组关联分析[J]. 中国农业科学, 2017, 50(2): 228-239.
doi: 10.3864/j.issn.0578-1752.2017.02.003 |
Zhou QH, Zhou C, Zheng W, et al. Genome wide association analysis of silique length in Brassica napus L[J]. Sci Agric Sin, 2017, 50(2): 228-239. | |
[14] |
韩德鹏, 周灿, 郑伟, 等. 甘蓝型油菜主花序性状全基因组关联分析[J]. 核农学报, 2018, 32(3): 463-476.
doi: 10.11869/j.issn.100-8551.2018.03.0463 |
Han DP, Zhou C, Zheng W, et al. Genome wide association analysis of main inflorescence related traits in Brassica napus L[J]. J Nucl Agric Sci, 2018, 32(3): 463-476. | |
[15] |
Zhao XZ, Yu KJ, Pang CK, et al. QTL analysis of five silique-related traits in Brassica napus L. across multiple environments[J]. Front Plant Sci, 2021, 12: 766271.
doi: 10.3389/fpls.2021.766271 URL |
[16] |
Wang XD, Chen L, Wang AN, et al. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus[J]. BMC Plant Biol, 2016, 16: 71.
doi: 10.1186/s12870-016-0759-7 URL |
[17] | 任义英, 崔翠, 王倩, 等. 甘蓝型油菜籽粒着生密度及其相关性状全基因组关联分析[J]. 植物遗传资源学报, 2018, 19(2): 314-325. |
Ren YY, Cui C, Wang Q, et al. Genome-wide association analysis of seed density within per silique and its related traits in Brassica napus L[J]. J Plant Genet Resour, 2018, 19(2): 314-325. | |
[18] |
Zhou QH, Zhou C, Zheng W, et al. Genome-wide SNP markers based on SLAF-seq uncover breeding traces in rapeseed(Brassica napus L.)[J]. Front Plant Sci, 2017, 8: 648.
doi: 10.3389/fpls.2017.00648 URL |
[19] |
Sun XW, Liu DY, Zhang XF, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3): e58700.
doi: 10.1371/journal.pone.0058700 URL |
[20] | 伍晓明, 陈碧云, 陆光远. 油菜种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2007. |
Wu XM, Chen BY, Lu GY. Descriptors and data standard for rapeseed(Brassica spp.)[M]. Beijing: Chinese Agriculture Press, 2007. | |
[21] |
Cui YW, Hu C, Zhu YF, et al. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis[J]. Plant Cell, 2018, 30(10): 2383-2401.
doi: 10.1105/tpc.17.00586 URL |
[22] |
Nowak K, Wójcikowska B, Gaj MD. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway[J]. Planta, 2015, 241(4): 967-985.
doi: 10.1007/s00425-014-2225-9 URL |
[23] |
Pignocchi C, Minns GE, Nesi N, et al. ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis[J]. Plant Cell, 2009, 21(1): 90-105.
doi: 10.1105/tpc.108.061812 pmid: 19151224 |
[24] |
Wang YP, Wu YY, Yu BY, et al. EXTRA-LARGE G PROTEINs interact with E3 ligases PUB4 and PUB2 and function in cytokinin and developmental processes[J]. Plant Physiol, 2017, 173(2): 1235-1246.
doi: 10.1104/pp.16.00816 pmid: 27986866 |
[25] |
Xiong F, Ren JJ, Yu Q, et al. AtBUD13 affects pre-mRNA splicing and is essential for embryo development in Arabidopsis[J]. Plant J, 2019, 98(4): 714-726.
doi: 10.1111/tpj.14268 |
[26] |
Toujani W, Muñoz-Bertomeu J, Flores-Tornero M, et al. Identification of the phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis[J]. Plant Signal Behav, 2013, 8(11): e27207.
doi: 10.4161/psb.27207 URL |
[27] |
Portereiko MF, Sandaklie-Nikolova L, Lloyd A, et al. NUCLEAR FUSION DEFECTIVE1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization[J]. Plant Physiol, 2006, 141(3): 957-965.
doi: 10.1104/pp.106.079319 pmid: 16698901 |
[28] |
Louvet R, Cavel E, Gutierrez L, et al. Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana[J]. Planta, 2006, 224(4): 782-791.
doi: 10.1007/s00425-006-0261-9 URL |
[29] |
Richmond TA, Bleecker AB. A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis[J]. Plant Cell, 1999, 11(10): 1911-1924.
pmid: 10521521 |
[30] |
Wang XM, Xie B, Zhu MS, et al. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis[J]. Plant Mol Biol, 2012, 78(1-2): 31-44.
doi: 10.1007/s11103-011-9840-7 URL |
[31] |
Chantha SC, Gray-Mitsumune M, Houde J, et al. The MIDASIN and NOTCHLESS genes are essential for female gametophyte development in Arabidopsis thaliana[J]. Physiol Mol Biol Plants, 2010, 16(1): 3-18.
doi: 10.1007/s12298-010-0005-y URL |
[32] |
Töller A, Brownfield L, Neu C, et al. Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth[J]. Plant J, 2008, 54(5): 911-923.
doi: 10.1111/j.1365-313X.2008.03462.x URL |
[33] |
Boavida LC, Shuai B, Yu HJ, et al. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana[J]. Genetics, 2009, 181(4): 1369-1385.
doi: 10.1534/genetics.108.090852 pmid: 19237690 |
[34] |
Dean PJ, Siwiec T, Waterworth WM, et al. A novel ATM-dependent X-ray-inducible gene is essential for both plant meiosis and gametogenesis[J]. Plant J, 2009, 58(5): 791-802.
doi: 10.1111/tpj.2009.58.issue-5 URL |
[35] |
Cheng Y, Cao L, Wang S, et al. Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis[J]. Plant J, 2013, 75(4): 642-655.
doi: 10.1111/tpj.2013.75.issue-4 URL |
[36] |
Berg M, Rogers R, Muralla R, et al. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis[J]. Plant J, 2005, 44(5): 866-878.
doi: 10.1111/tpj.2005.44.issue-5 URL |
[37] |
Feng QN, Liang X, Li S, et al. The ADAPTOR PROTEIN-3 complex mediates pollen tube growth by coordinating vacuolar targeting and organization[J]. Plant Physiol, 2018, 177(1): 216-225.
doi: 10.1104/pp.17.01722 URL |
[38] |
Kamata N, Okada H, Komeda Y, et al. Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana[J]. Plant J, 2013, 75(3): 430-440.
doi: 10.1111/tpj.2013.75.issue-3 URL |
[39] | Ahmad A. 甘蓝型油菜初始胚珠数和每角果粒数数量性状位点(QTL)的研究[D]. 武汉: 华中农业大学, 2018. |
Ahmad A. Quantitative trait loci(QTL)studies for the number of ovules and seeds per pod in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[40] |
钟婷婷, 郭诗芬, 卢文斌, 等. 甘蓝型油菜抗根肿病KASP标记开发和利用[J]. 华北农学报, 2021, 36(4): 184-190.
doi: 10.7668/hbnxb.20192042 |
Zhong TT, Guo SF, Lu WB, et al. Development and utilization of KASP marker for Brassica napus clubroot resistance breeding[J]. Acta Agric Boreali Sin, 2021, 36(4): 184-190. | |
[41] |
Jiao YM, Zhang KP, Cai GQ, et al. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L[J]. Theor Appl Genet, 2021, 134(8): 2517-2530.
doi: 10.1007/s00122-021-03839-6 |
[42] |
Zhai YG, Cai SL, Hu LM, et al. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L[J]. Theor Appl Genet, 2019, 132(7): 2111-2123.
doi: 10.1007/s00122-019-03341-0 |
[43] |
Zheng M, Zhang L, Tang M, et al. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed(Brassica napus L.)[J]. Plant Biotechnol J, 2020, 18(3): 644-654.
doi: 10.1111/pbi.13228 pmid: 31373135 |
[44] | 高谢旺, 谭安琪, 胡信畅, 等. 利用CRISPR/Cas9技术创制高油酸甘蓝型油菜新种质[J]. 植物遗传资源学报, 2020, 21(4): 1002-1008. |
Gao XW, Tan AQ, Hu XC, et al. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9[J]. J Plant Genet Resour, 2020, 21(4): 1002-1008. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||