Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 236-245.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1051

Previous Articles     Next Articles

Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress

HU Ming-yue1(), YANG Yu1, GUO Yang-dong2, ZHANG Xi-chun1()   

  1. 1. College of Plant Science and Technology, Beijing University of Agriculture, Beijing Laboratory of Vegetable Genetics, Breeding and Biotechnology, Beijing 102206
    2. College of Horticulture, China Agricultural University, Beijing 100094
  • Received:2022-08-23 Online:2023-04-26 Published:2023-05-16

Abstract:

This study is to discuss the function of SlMYB96 in tomato under cold resistance, aiming to provide theoretical basis for the molecular mechanism of cold resistance and breeding of tomato under cold resistance. The SlMYB96 gene was cloned using tomato cDNA as the template. Then the physical and chemical properties of the gene were analyzed by bioinformatic software, and the expression features of SlMYB96 and its role in cold resistance in tomato was studies by real-time quantitative fluorescence(RT-qPCR)technology and virus-induced gene silencing(VIGS)technology. The results showed that SlMYB96 was expressed in the roots, stems, leaves, flowers, and fruit of tomato, with the highest expression in the flowers. And the expression of SlMYB96 increased with increasing time of 4℃ cold treatment, where expression reached the maximum at three hour of low temperature treatment. With the help of VIGS the SlMYB96 gene was silenced. Three different types of tomato plants in wild-type group(WT), empty load group(CK)and gene transient silencing group(pTRV-MYB96)were treated with low temperature. And the appearance traits showed that plants in the transient gene silencing group(pTRV-MYB96)after cold treatment at 4℃ for five days, presented more obvious cold damage symptoms compared with the wild-type group(WT)and the empty-load group(CK). The identification results of the physiological level showed that when tomato seedlings were treated with 4℃ at low temperature for five days, the content of chlorophyll, malondialdehyde, soluble protein and superoxide dismutase activity of the gene transient silencing group(pTRV-MYB96)plants were significantly lower, while the activity of soluble sugar, relative conductivity, free proline content, catalase and peroxidase increased. When tomato seedlings treated under cold 4℃ for five days, chlorophyll, malondialdehyde, soluble protein content and superoxide dismutase activity were significantly lower in gene transient silent group(pTRV-MYB96), while soluble sugar, relative conductivity, free proline content and catalase and peroxidase activity increased, indicating that gene transient silent group(pTRV-MYB96)plants had lower cold resistance compared with wild-type group(WT)and empty load group(CK). It is confirmed that SlMYB96 gene can respond to cold stress and reduce cold resistance after silencing.

Key words: tomato, SlMYB96, gene function analysis, cold hardiness