Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 300-310.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0169
Previous Articles Next Articles
DING Li1(), DU Ting-ting1, TANG Qiong-ying1, GAO Quan-xin1, YI Shao-kui1(), YANG Guo-liang1,2()
Received:
2023-02-28
Online:
2023-09-26
Published:
2023-10-24
Contact:
YI Shao-kui, YANG Guo-liang
E-mail:dingli104619430849@163.com;02844@zjhu.edu.cn;ygl0572@163.com.
DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii[J]. Biotechnology Bulletin, 2023, 39(9): 300-310.
Fig. 1 Schematic diagram of the regulation process of molting in arthropods MIH receptor is G protein-coupled receptor. When MIH binds to the receptor, intracellular cAMP increases, activating Ca2+ channels on the cell membrane, and Ca2+ enters the cell and activates calmodulin(CaM). CaM dephosphorylates nitric oxide synthase activates NOS, then NO is formed with arginine as a substrate, and then this activates guanylate cyclase type I(GC-I), GC-I converts GTP to cGTP, and activates cGTP-dependent protein kinases in cells. The active PKA enters the nucleus to regulate the synthesis of ecdyhormone, and after 20E enters the nucleus, it binds to heterodimer(ECR/USP/RXR)to initiate early response genes, such as E75, E74 and Br-C, and then regulates early-late genes, such as HR3, HR4 and HR38, and finally these early and late response genes regulate late response genes, such as FTZ-F1, and finally complete molting. Endocrine Inka cells secrete ecdy-initiating hormone(ETH)acting on the ecdy-initiating hormone receptor(ETHR), initiating molt
引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product length/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|
FTZ-F1-F-1 | CCTATTATGCTGCGGGAGT | 649 | 55 |
FTZ-F1-R-1 | CACCGTTGATGTGCTTGTA | ||
FTZ-F1-F-2 | TGTCCGTACTGTCGCTTTC | 627 | 52 |
FTZ-F1-R-2 | ACCAACTCCCGCAGCATA | ||
FTZ-F1-F-3 | CCTATTATGCTGCGGGAGT | 595 | 55 |
FTZ-F1-R-3 | GAAGCTCTGGCAGTAAATCC | ||
ETHR-F-1 | GTCCCGTTGCTGGTTCTT | 535 | 55 |
ETHR-R-1 | ATGACGCTGACCCTGTTG | ||
ETHR-F-2 | CGATGACGCTGACCCTGT | 537 | 55 |
ETHR-R-2 | AAGCCAAGGCGATAACAG | ||
ETHR-F-3 | ATAGTGCAGCCGCAGATT | 635 | 53.5 |
ETHR-R-3 | GGATCACCTGCACCAACGTA | ||
RTFTZ-F1-F | GGATCACCTGCACCAACGTA | 120 | 57 |
RTFTZ-F1-R | GGAAACGATCTGCGAACTGC | ||
RTETHR-F | GTCCCGTTGCTGGTTCTT | 165 | 55 |
RTETHR-R | GTCTCGCTCGCATTTGTG | ||
RTMIH-F | AGCCCTGAGTGTCTGTCC | 123 | 57 |
RTMIH-R | CCTTGCGTTGTCTGGTT | ||
RTRXR-F | GATCGGCAGTCCCCTTTGAA | 109 | 57 |
RTRXR-R | TTGGACACACTGGGAGAAGC | ||
RTECR-F | AGAGCCGCATAAAGTGGAGA | 134 | 57 |
RTECR-R | CTCAGGTCGGTCAGGATGTT | ||
18S-F | TATACGCTAGTGGAGCTGGAA | 313 | 60 |
18S-R | GGGGAGGTAGTGACGAAAAAT |
Table 1 Primer sequences used in the experiment
引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product length/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|
FTZ-F1-F-1 | CCTATTATGCTGCGGGAGT | 649 | 55 |
FTZ-F1-R-1 | CACCGTTGATGTGCTTGTA | ||
FTZ-F1-F-2 | TGTCCGTACTGTCGCTTTC | 627 | 52 |
FTZ-F1-R-2 | ACCAACTCCCGCAGCATA | ||
FTZ-F1-F-3 | CCTATTATGCTGCGGGAGT | 595 | 55 |
FTZ-F1-R-3 | GAAGCTCTGGCAGTAAATCC | ||
ETHR-F-1 | GTCCCGTTGCTGGTTCTT | 535 | 55 |
ETHR-R-1 | ATGACGCTGACCCTGTTG | ||
ETHR-F-2 | CGATGACGCTGACCCTGT | 537 | 55 |
ETHR-R-2 | AAGCCAAGGCGATAACAG | ||
ETHR-F-3 | ATAGTGCAGCCGCAGATT | 635 | 53.5 |
ETHR-R-3 | GGATCACCTGCACCAACGTA | ||
RTFTZ-F1-F | GGATCACCTGCACCAACGTA | 120 | 57 |
RTFTZ-F1-R | GGAAACGATCTGCGAACTGC | ||
RTETHR-F | GTCCCGTTGCTGGTTCTT | 165 | 55 |
RTETHR-R | GTCTCGCTCGCATTTGTG | ||
RTMIH-F | AGCCCTGAGTGTCTGTCC | 123 | 57 |
RTMIH-R | CCTTGCGTTGTCTGGTT | ||
RTRXR-F | GATCGGCAGTCCCCTTTGAA | 109 | 57 |
RTRXR-R | TTGGACACACTGGGAGAAGC | ||
RTECR-F | AGAGCCGCATAAAGTGGAGA | 134 | 57 |
RTECR-R | CTCAGGTCGGTCAGGATGTT | ||
18S-F | TATACGCTAGTGGAGCTGGAA | 313 | 60 |
18S-R | GGGGAGGTAGTGACGAAAAAT |
Fig. 2 Dynamics in molting-related enzyme activity in M. rosenbergiiat at different molting cycles C: Intermolt stage. D: Premolt stage. E: Molt stage. AB: Postmolt stage. Different letters indicated significant differences(P<0.05), The same below
[1] |
Liu SB, Li XY, Wang XD, et al. Molting, tissue calcium-phosphorus deposition and immunity of juvenile Chinese mitten crab(Eriocheir sinensis)fed different levels of calcium and vitamin D3[J]. Aquaculture, 2022, 554: 738124.
doi: 10.1016/j.aquaculture.2022.738124 URL |
[2] | 叶成凯, 卢志杰, Sarath Babu V, 等. 罗氏沼虾几丁质酶3B基因的克隆及其在蜕皮周期中的表达[J]. 水产学报, 2019, 43(4): 751-762. |
Ye CK, Lu ZJ, Sarath B, et al. Cloning and expression analysis of chitinase-3B from giant freshwater prawn(Macrobrachium rosenbergii)during molting cycle[J]. J Fish China, 2019, 43(4): 751-762. | |
[3] |
Raghavan SDA, Ayanath A. Effect of ecdysteroids on oogenesis in the freshwater crab Travancoriana schirnerae Bott, 1969(Crustacea: Gecarcinucidae)[J]. Braz J Biol Sci, 2019, 6(12): 87-101.
doi: 10.21472/bjbs.061208 URL |
[4] | Head TB, Mykles DL, Tomanek L. Proteomic analysis of the crustacean molting gland(Y-organ)over the course of the molt cycle[J]. Comp Biochem Physiol D Genom Proteom, 2019, 29: 193-210. |
[5] |
Kim HW, Lee SG, Mykles DL. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains[J]. Mol Cell Endocrinol, 2005, 242(1-2): 80-95.
doi: 10.1016/j.mce.2005.08.001 URL |
[6] |
Chang ES, Mykles DL. Regulation of crustacean molting: a review and our perspectives[J]. Gen Comp Endocrinol, 2011, 172(3): 323-330.
doi: 10.1016/j.ygcen.2011.04.003 URL |
[7] |
Mykles DL. Ecdysteroid metabolism in crustaceans[J]. J Steroid Biochem Mol Biol, 2011, 127(3-5): 196-203.
doi: 10.1016/j.jsbmb.2010.09.001 URL |
[8] |
Van Lommel J, Lenaerts C, Delgouffe C, et al. Knockdown of ecdysone receptor in male desert locusts affects relative weight of accessory glands and mating behavior[J]. J Insect Physiol, 2022, 138: 104368.
doi: 10.1016/j.jinsphys.2022.104368 URL |
[9] | 柳鹏飞, 王伟伟, 凌晓霏, 等. 保幼激素和蜕皮激素调控昆虫变态发育机制的进展[J]. 基因组学与应用生物学, 2021, 40(Z1): 2054-2062. |
Liu PF, Wang WW, Lin XF, et al. Advances in molecular mechanism of juvenile hormone and molting hormone-mediated metamorphosis[J]. Genomics and Applied Biology, 2021, 40(Z1): 2054-2062. | |
[10] |
Gu SH, Chen CH, Lin PL. Changes in expressions of ecdysteroidogenic enzyme and ecdysteroid signaling genes in relation to Bombyx embryonic development[J]. J Exp Zool A Ecol Integr Physiol, 2021, 335(5): 477-488.
doi: 10.1002/jez.v335.5 URL |
[11] |
Street SM, Eytcheson SA, LeBlanc GA. The role of nuclear receptor E75 in regulating the molt cycle of Daphnia magna and consequences of its disruption[J]. PLoS One, 2019, 14(8): e0221642.
doi: 10.1371/journal.pone.0221642 URL |
[12] |
Zhu L, Zhang W, Li G, et al. Molecular characterization of ecdysis triggering hormone and its receptor in citrus red mite(Panonychus citri)[J]. Comp Biochem Physiol A Mol Integr Physiol, 2019, 230: 100-105.
doi: 10.1016/j.cbpa.2019.01.003 URL |
[13] |
Shahin R, Fujimoto S, Kawasaki H. Cuticular protein genes showing peaks at different stages are probably regulated by different ecdysone responsive transcription factors during larval-pupal transformation[J]. Gene, 2022, 809: 146002.
doi: 10.1016/j.gene.2021.146002 URL |
[14] |
Cho KH, Daubnerová I, Park Y, et al. Secretory competence in a gateway endocrine cell conferred by the nuclear receptor βFTZ-F1 enables stage-specific ecdysone responses throughout development in Drosophila[J]. Dev Biol, 2014, 385(2): 253-262.
doi: 10.1016/j.ydbio.2013.11.003 URL |
[15] |
Zhang WN, Ma L, Liu XY, et al. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera[J]. Pest Manag Sci, 2021, 77(3): 1328-1338.
doi: 10.1002/ps.v77.3 URL |
[16] |
Liu ZQ, Nanda S, Yang CX, et al. RNAi suppression of the nuclear receptor FTZ-F1 impaired ecdysis, pupation, and reproduction in the 28-spotted potato ladybeetle, Henosepilachna vigintioctopunctata[J]. Pestic Biochem Physiol, 2022, 182: 105029.
doi: 10.1016/j.pestbp.2021.105029 URL |
[17] |
Yuan HW, Zhang WY, Fu Y, et al. MnFtz-f1 is required for molting and ovulation of the oriental river prawn Macrobrachium nipponense[J]. Front Endocrinol, 2021, 12: 798577.
doi: 10.3389/fendo.2021.798577 URL |
[18] |
Shen CH, Xu QY, Fu KY, et al. Two splice isoforms of Leptinotarsa ecdysis triggering hormone receptor have distinct roles in larva-Pupa transition[J]. Front Physiol, 2020, 11: 593962.
doi: 10.3389/fphys.2020.593962 URL |
[19] |
Shi Y, Liu TY, Jiang HB, et al. The ecdysis triggering hormone system, via ETH/ETHR-B, is essential for successful reproduction of a major pest insect, Bactrocera dorsalis(Hendel)[J]. Front Physiol, 2019, 10: 151.
doi: 10.3389/fphys.2019.00151 URL |
[20] |
Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop[J]. Annu Rev Pharmacol Toxicol, 2002, 42: 437-467.
pmid: 11807179 |
[21] | 丁兰, 徐胜南. 罗氏沼虾养殖技术探索与示范[J]. 水产养殖, 2022, 43(4): 64-66. |
Ding L, Xu SN. Exploration and demonstration of Macrobrachium rosenbergii culture technology[J]. J Aquac, 2022, 43(4): 64-66. | |
[22] |
Schumann I, Kenny N, Hui J, et al. Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa[J]. R Soc Open Sci, 2018, 5(9): 180888.
doi: 10.1098/rsos.180888 URL |
[23] |
Benhalima K, Moriyasu M, Hébert M. A technique for identifying the early-premolt stage in the male snow crab Chionoecetes opilio(Brachyura: Majidae)in Baie des Chaleurs, southern Gulf of St. Lawrence[J]. Can J Zool, 1998, 76(4): 609-617.
doi: 10.1139/z97-239 URL |
[24] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[26] |
Kim C, Kültz D. An osmolality/salinity-responsive enhancer 1(OSRE1)in intron 1 promotes salinity induction of tilapia glutamine synthetase[J]. Sci Rep, 2020, 10: 12103.
doi: 10.1038/s41598-020-69090-z |
[27] |
Qiu LG, Shi X, Yu SM, et al. Changes of ammonia-metabolizing enzyme activity and gene expression of two strains in shrimp litopenaeus vannamei under ammonia stress[J]. Front Physiol, 2018, 9: 211.
doi: 10.3389/fphys.2018.00211 URL |
[28] | 孙武卫. 低盐胁迫下凡纳滨对虾消减cDNA文库构建及谷氨酰胺合成酶cDNA克隆和表达[D]. 湛江: 广东海洋大学. |
Sun WW. Construction of subtractive cDNA library of litopenaeus vannamei and cloning and expression of glutamine synthase cDNA under low salt stress[D]. Zhanjiang: Guangdong Ocean University. | |
[29] |
McKinnon E, Hargittai PT, Grossfeld RM, et al. Glutamine cycle enzymes in the crayfish giant nerve fiber: implications for axon-to-glia signaling[J]. Glia, 1995, 14(3): 198-208.
pmid: 7591031 |
[30] | 贾玉萍. 中国明对虾SWD抗菌肽、谷氨酰胺合成酶和Ras基因的表达与功能研究[D]. 济南: 山东大学, 2008. |
Jia YP. Study on the expression and function of SWD antimicrobial peptide, glutamine synthase and ras gene in fenneropenaeus China[D]. Jinan: Shandong University, 2008. | |
[31] | 陈劲松, 周发林, 江世贵, 等. 斑节对虾谷氨酰胺合成酶基因的克隆及氨氮胁迫对其时空表达的影响[J]. 上海海洋大学学报, 2016, 25(4): 497-507. |
Chen JS, Zhou FL, Jiang SG, et al. Molecular cloning and the expression analysis of glutamine synthetase(GS)in Penaeus monodon under the condition of ammonia nitrogen stress[J]. J Shanghai Ocean Univ, 2016, 25(4): 497-507. | |
[32] | 李少飞. 中国对虾氨氮代谢酶基因的cDNA克隆及其在氨氮解毒代谢过程中的作用[D]. 大连: 大连海洋大学, 2014. |
Li SF. CDNA cloning of ammonia-nitrogen metabolizing enzyme gene of Penaeus China and its role in detoxification and metabolism of ammonia-nitrogen[D]. Dalian: Dalian Ocean University, 2014. | |
[33] |
Dukariya G, Kumar A. Distribution and biotechnological applications of chitinase: a review[J]. Ijbb, 2020, 8(2): 17-29.
doi: 10.13189/ijbb.2020.080201 URL |
[34] | Soedirga LC, Hardoko H, Widianto NV. Production of N-acetylglucosamine from semi purified chitinase of Mucor circinelloides that immobilized by using agar[J]. J Perikanan Univ Gadjah Mada, 2019, 21(2): 99. |
[35] |
Beygmoradi A, Homaei A, Hemmati R, et al. Identification of a novel tailor-made chitinase from white shrimp Fenneropenaeus merguiensis[J]. Colloids Surf B Biointerfaces, 2021, 203: 111747.
doi: 10.1016/j.colsurfb.2021.111747 URL |
[36] | 吕艳杰, 关建义, 杜娟, 等. 日本沼虾N-乙酰-β-D-氨基葡萄糖苷酶基因克隆及KK-42对其表达的影响[J]. 水产学报, 2018, 42(5): 646-652. |
Lü YJ, Guan JY, Du J, et al. Molecular cloning of N-acetyl-β-D-glucosaminidase(NAGase)gene and the effect of KK-42 on NAGase gene in Macrobrachium nipponense[J]. J Fish China, 2018, 42(5): 646-652. | |
[37] |
Li XG, Xu ZQ, Zhou G, et al. Molecular characterization and expression analysis of five chitinases associated with molting in the Chinese mitten crab, Eriocheir sinensis[J]. Comp Biochem Physiol B Biochem Mol Biol, 2015, 187: 110-120.
doi: 10.1016/j.cbpb.2015.05.007 URL |
[38] | 黄姝, 陈娇, 陈晓雯, 等. 中华绒螯蟹蜕壳周期内蜕皮激素和蜕壳相关基因的表达动态分析[J]. 农业生物技术学报, 2018, 26(1): 150-158. |
Huang S, Chen J, Chen XW, et al. Dynamic analysis of ecdysteroid hormone content and molting related genes expression in the molting cycle of Chinese mitten crab(Eriocheir sinensis)[J]. J Agric Biotechnol, 2018, 26(1): 150-158. | |
[39] | 张龙涛, 吕建建, 高保全, 等. 三疣梭子蟹 ftz-f 基因的克隆及相关核受体基因在蜕皮中的功能分析[J]. 海洋与湖沼, 2015, 46(6): 1390-1397. |
Zhang LT, Lv JJ, Gao BQ, et al. Cloning of Portunus trituberculatus ftz-f1 cdna and expression analysis of related nuclear receptors during molting cycle[J]. Oceanol Limnol Sin, 2015, 46(6): 1390-1397. | |
[40] |
Techa S, Chung JS. Ecdysteroids regulate the levels of molt-inhibiting hormone(MIH)expression in the blue crab, Callinectes sapidus[J]. PLoS One, 2015, 10(4): e0117278.
doi: 10.1371/journal.pone.0117278 URL |
[41] | 王瑶, 杨志刚, 沈城, 等. 中华绒螯蟹RXR基因全长cDNA克隆及表达分析[J]. 水产学报, 2013, 37(12): 1761-1769. |
Wang Y, Yang ZG, Shen C, et al. Full-length cDNA cloning and expression analysis of RXR gene in Eriocheir sinensis[J]. Journal of Fisheries of China, 2013, 37(12): 1761-1769.
doi: 10.3724/SP.J.1231.2013.38754 URL |
|
[42] |
Jose Priya TA, Li FH, Zhang JQ, et al. Molecular characterization and effect of RNA interference of retinoid X receptor(RXR)on E75 and chitinase gene expression in Chinese shrimp Fenneropenaeus chinensis[J]. Comp Biochem Physiol B Biochem Mol Biol, 2009, 153(1): 121-129.
doi: 10.1016/j.cbpb.2009.02.009 pmid: 19250973 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||