Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 149-159.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0284
Previous Articles Next Articles
WANG Feng-ting1(), ZHAO Fu-shun2, QIAO Kai-bin1, XU Xun1, LIU Jin-liang1()
Received:
2024-03-21
Online:
2024-10-26
Published:
2024-11-20
Contact:
LIU Jin-liang
E-mail:wft1001@jlu.edu.cn;jlliu@jlu.edu.cn
WANG Feng-ting, ZHAO Fu-shun, QIAO Kai-bin, XU Xun, LIU Jin-liang. Progress on the Molecular Mechanism of Scion-rootstock Interactions in Vegetable Grafting[J]. Biotechnology Bulletin, 2024, 40(10): 149-159.
RNA种类RNA type | 名称 Name | 作用 Function | 蔬菜名称 Species | 运动方向 Moving direction | 参考文献 Reference |
---|---|---|---|---|---|
mRNA | NACP | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 砧木到接穗Rootstock to scion | [ |
Homeobox1 | 调控块茎生长Regulate tuber growth | 马铃薯Potato | 砧木到接穗Rootstock to scion | [ | |
IAA18/28 | 影响根生长Affect root growth | 甜瓜Melon | 接穗到砧木Scion to rootstock | [ | |
GAI | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 接穗韧皮部到茎尖Scion phloem to shoot | [ | |
BEL11 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
BEL29 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
PS | 抗灰霉病菌Resist to gray mold | 番茄Tomato | 双向运输Bidirectional movement | [ | |
miRNA | miR399 | 稳定磷元素Stabilize phosphorus | 油菜,南瓜 Rape, pumpkin | 接穗到砧木Scion to rootstock | [ |
miR395 | 稳定硫元素Stabilize sulfur | 油菜Rape | 接穗到砧木Scion to rootstock | [ | |
miR172 | 调控花和块茎的生长 Regulate the growth of flower and tuber | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR156 | 影响叶片形态和块茎生长 Affect leaf morphology and tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR408 | 稳定铜元素Stabilize copper | 西瓜Watermelon | 砧木到接穗Rootstock to scion | [ | |
siRNA | siRNA | DNA甲基化DNA methylation | 番茄Tomato | 双向运输Bidirectional movement | [ |
siRNA | 影响病毒Affect virus | 番茄Tomato | 砧木到接穗Rootstock to scion | [ | |
lncRNA | lncRNA | 稳定磷元素Stabilize phosphorus | 黄瓜Cucumber | 接穗到砧木Scion to rootstock | [ |
Table 1 The movement of RNAs between rootstock and scion
RNA种类RNA type | 名称 Name | 作用 Function | 蔬菜名称 Species | 运动方向 Moving direction | 参考文献 Reference |
---|---|---|---|---|---|
mRNA | NACP | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 砧木到接穗Rootstock to scion | [ |
Homeobox1 | 调控块茎生长Regulate tuber growth | 马铃薯Potato | 砧木到接穗Rootstock to scion | [ | |
IAA18/28 | 影响根生长Affect root growth | 甜瓜Melon | 接穗到砧木Scion to rootstock | [ | |
GAI | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 接穗韧皮部到茎尖Scion phloem to shoot | [ | |
BEL11 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
BEL29 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
PS | 抗灰霉病菌Resist to gray mold | 番茄Tomato | 双向运输Bidirectional movement | [ | |
miRNA | miR399 | 稳定磷元素Stabilize phosphorus | 油菜,南瓜 Rape, pumpkin | 接穗到砧木Scion to rootstock | [ |
miR395 | 稳定硫元素Stabilize sulfur | 油菜Rape | 接穗到砧木Scion to rootstock | [ | |
miR172 | 调控花和块茎的生长 Regulate the growth of flower and tuber | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR156 | 影响叶片形态和块茎生长 Affect leaf morphology and tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR408 | 稳定铜元素Stabilize copper | 西瓜Watermelon | 砧木到接穗Rootstock to scion | [ | |
siRNA | siRNA | DNA甲基化DNA methylation | 番茄Tomato | 双向运输Bidirectional movement | [ |
siRNA | 影响病毒Affect virus | 番茄Tomato | 砧木到接穗Rootstock to scion | [ | |
lncRNA | lncRNA | 稳定磷元素Stabilize phosphorus | 黄瓜Cucumber | 接穗到砧木Scion to rootstock | [ |
[1] | Bithell SL, Condè B, Traynor M, et al. Grafting for soilborne disease management in Australian vegetable production systems-a review[J]. Australas Plant Pathol, 2013, 42(3): 329-336. |
[2] | Keinath AP, Agudelo PA. Retention of resistance to Fusarium oxysporum f. sp. niveum in cucurbit rootstocks infected by Meloidogyne incognita[J]. Plant Dis, 2018, 102(9): 1820-1827. |
[3] | Penella C, Landi M, Guidi L, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength[J]. J Plant Physiol, 2016, 193:1-11. |
[4] |
Bőhm V, Fekete D, Balázs G, et al. Salinity tolerance of grafted watermelon seedlings[J]. Acta Biol Hung, 2017, 68(4): 412-427.
doi: 10.1556/018.68.2017.4.7 pmid: 29262705 |
[5] | Nilsen ET, Freeman J, Grene R, et al. A rootstock provides water conservation for a grafted commercial tomato(Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters[J]. PLoS One, 2014, 9(12): e115380. |
[6] | Padilla YG, Gisbert-Mullor R, López-Serrano L, et al. Grafting enhances pepper water stress tolerance by improving photosynthesis and antioxidant defense systems[J]. Antioxidants, 2021, 10(4): 576. |
[7] | Guo ZX, Qin YP, Lv JL, et al. Luffa rootstock enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot[J]. Environ Pollut, 2023, 316(Pt1): 120521. |
[8] | Tietel Z, Srivastava S, Fait A, et al. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata[J]. PLoS One, 2020, 15(1): e0227192. |
[9] | Fredes A, Roselló S, Beltrán J, et al. Fruit quality assessment of watermelons grafted onto citron melon rootstock[J]. J Sci Food Agric, 2017, 97(5): 1646-1655. |
[10] | Fallik E, Ziv C. How rootstock/scion combinations affect watermelon fruit quality after harvest?[J]. J Sci Food Agric, 2020, 100(8): 3275-3282. |
[11] | Garcia-Lozano M, Dutta SK, Natarajan P, et al. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids[J]. Plant Mol Biol, 2020, 102(1/2): 213-223. |
[12] | Darré M, Valerga L, Zaro MJ, et al. Eggplant grafting on a cold-tolerant rootstock reduces fruit chilling susceptibility and improves antioxidant stability during storage[J]. J Sci Food Agric, 2022, 102(8): 3350-3358. |
[13] |
Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications[J]. Front Plant Sci, 2014, 5: 727.
doi: 10.3389/fpls.2014.00727 pmid: 25566298 |
[14] |
Nawaz MA, Imtiaz M, Kong QS, et al. Grafting: A technique to modify ion accumulation in horticultural crops[J]. Front Plant Sci, 2016, 7: 1457.
pmid: 27818663 |
[15] | Zhang KW, Novak O, Wei ZY, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nat Commun, 2014, 5: 3274. |
[16] | Melnyk CW. Grafting with Arabidopsis thaliana[M]// Plant Hormones. New York: Humana Press, 2017: 9-18. |
[17] |
Melnyk CW. Plant grafting: insights into tissue regeneration[J]. Regeneration, 2017, 4(1): 3-14.
doi: 10.1002/reg2.71 pmid: 28316790 |
[18] | Melnyk CW, Gabel A, Hardcastle TJ, et al. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration[J]. Proc Natl Acad Sci USA, 2018, 115(10): E2447-e2456. |
[19] | Melnyk CW, Schuster C, Leyser O, et al. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana[J]. Curr Biol, 2015, 25(10): 1306-1318. |
[20] | Jeffree CE, Yeoman MM. Development of intercellular connections between opposing cells in a graft union[J]. New Phytol, 1983, 93(4): 491-509. |
[21] | Thomas HR, Gevorgyan A, Frank MH. Anatomical and biophysical basis for graft incompatibility within the Solanaceae[J]. J Exp Bot, 2023, 74(15): 4461-4470. |
[22] |
Notaguchi M, Kurotani KI, Sato Y, et al. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases[J]. Science, 2020, 369(6504): 698-702.
doi: 10.1126/science.abc3710 pmid: 32764072 |
[23] |
Wulf KE, Reid JB, Foo E. What drives interspecies graft union success? Exploring the role of phylogenetic relatedness and stem anatomy[J]. Physiol Plant, 2020, 170(1): 132-147.
doi: 10.1111/ppl.13118 pmid: 32385889 |
[24] |
Yin H, Yan B, Sun J, et al. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation[J]. J Exp Bot, 2012, 63(11): 4219-4232.
doi: 10.1093/jxb/ers109 pmid: 22511803 |
[25] | Bonke M, Thitamadee S, Mähönen AP, et al. APL regulates vascular tissue identity in Arabidopsis[J]. Nature, 2003, 426(6963): 181-186. |
[26] |
Whitford R, Fernandez A, De Groodt R, et al. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells[J]. Proc Natl Acad Sci USA, 2008, 105(47): 18625-18630.
doi: 10.1073/pnas.0809395105 pmid: 19011104 |
[27] |
Saito M, Kondo Y, Fukuda H. BES1 and BZR1 redundantly promote phloem and xylem differentiation[J]. Plant Cell Physiol, 2018, 59(3): 590-600.
doi: 10.1093/pcp/pcy012 pmid: 29385529 |
[28] | Anne P, Azzopardi M, Gissot L, et al. OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana[J]. Curr Biol, 2015, 25(19): 2584-2590. |
[29] | Kurotani KI, Wakatake T, Ichihashi Y, et al. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum[J]. Commun Biol, 2020, 3(1): 407. |
[30] | Luo GB, Huang XR, Chen JW, et al. Systematic analysis of the grafting-related glucanase-encoding GH9 family genes in pepper, tomato and tobacco[J]. Plants, 2022, 11(16): 2092. |
[31] | Thomas HR, Gevorgyan A, Hermanson A, et al. Graft incompatibility between pepper and tomato can be attributed to genetic incompatibility between diverged immune systems[J]. bioRxiv, 2024: 2024.03.29.587379. |
[32] | Thomas H, Van den Broeck L, Spurney R, et al. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation[J]. Plant Cell, 2022, 34(1): 535-556. |
[33] | Rasool A, Mansoor S, Bhat KM, et al. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants[J]. Front Plant Sci, 2020, 11: 590847. |
[34] |
Nanda AK, Melnyk CW. The role of plant hormones during grafting[J]. J Plant Res, 2018, 131(1): 49-58.
doi: 10.1007/s10265-017-0994-5 pmid: 29181647 |
[35] |
Liu Q, Wang XR, Zhao Y, et al. Transcriptome and physiological analyses reveal new insights into delayed incompatibility formed by interspecific grafting[J]. Sci Rep, 2023, 13(1): 4574.
doi: 10.1038/s41598-023-31804-4 pmid: 36941326 |
[36] |
Mähönen AP, Bishopp A, Higuchi M, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development[J]. Science, 2006, 311(5757): 94-98.
doi: 10.1126/science.1118875 pmid: 16400151 |
[37] |
Jeffs RA, Northcote DH. Experimental induction of vascular tissue in an undifferentiated plant callus[J]. Biochem J, 1966, 101(1): 146-152.
pmid: 5971774 |
[38] | Sharma A, Zheng BS. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins[J]. Biomolecules, 2019, 9(9): 397. |
[39] |
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases[J]. J Exp Bot, 2016, 67(14): 4015-4037.
doi: 10.1093/jxb/erw216 pmid: 27242371 |
[40] |
Ivanchenko MG, Zhu JS, Wang BJ, et al. The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation[J]. Development, 2015, 142(4): 712-721.
doi: 10.1242/dev.113225 pmid: 25617431 |
[41] | Yuan MZ, Jin T, Wu JQ, et al. IAA-miR164a-NAC100L1 module mediates symbiotic incompatibility of cucumber/pumpkin grafted seedlings through regulating callose deposition[J]. Hortic Res, 2023, 11(2): uhad287. |
[42] |
Liu YS. Historical and modern genetics of plant graft hybridization[J]. Adv Genet, 2006, 56: 101-129.
pmid: 16735156 |
[43] |
Liu YS. Darwin's pangenesis and graft hybridization[J]. Adv Genet, 2018, 102: 27-66.
doi: S0065-2660(18)30007-5 pmid: 30122234 |
[44] |
Hao JJ, Jia XH, Yu JW, et al. Direct visualization of horizontal gene transfer in cotton plants[J]. J Hered, 2014, 105(6): 834-836.
doi: 10.1093/jhered/esu052 pmid: 25160847 |
[45] |
Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts[J]. Science, 2009, 324(5927): 649-651.
doi: 10.1126/science.1170397 pmid: 19407205 |
[46] |
Stegemann S, Keuthe M, Greiner S, et al. Horizontal transfer of chloroplast genomes between plant species[J]. Proc Natl Acad Sci USA, 2012, 109(7): 2434-2438.
doi: 10.1073/pnas.1114076109 pmid: 22308367 |
[47] | Fuentes I, Stegemann S, Golczyk H, et al. Horizontal genome transfer as an asexual path to the formation of new species[J]. Nature, 2014, 511(7508): 232-235. |
[48] |
Lu YH, Stegemann S, Agrawal S, et al. Horizontal transfer of a synthetic metabolic pathway between plant species[J]. Curr Biol, 2017, 27(19): 3034-3041.e3.
doi: S0960-9822(17)31082-5 pmid: 28943084 |
[49] |
Haroldsen VM, Chi-Ham CL, Bennett AB. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks[J]. J Biotechnol, 2012, 161(3): 349-353.
doi: 10.1016/j.jbiotec.2012.06.017 pmid: 22749907 |
[50] |
Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants[J]. Development, 1999, 126(20): 4405-4419.
doi: 10.1242/dev.126.20.4405 pmid: 10498677 |
[51] |
Ghate TH, Sharma P, Kondhare KR, et al. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato[J]. Plant Mol Biol, 2017, 93(6): 563-578.
doi: 10.1007/s11103-016-0582-4 pmid: 28084609 |
[52] |
Omid A, Keilin T, Glass A, et al. Characterization of phloem-sap transcription profile in melon plants[J]. J Exp Bot, 2007, 58(13): 3645-3656.
doi: 10.1093/jxb/erm214 pmid: 17928373 |
[53] |
Haywood V, Yu TS, Huang NC, et al. Phloem long-distance trafficking of gibberellic acid-insensitive RNA regulates leaf development[J]. Plant J, 2005, 42(1): 49-68.
doi: 10.1111/j.1365-313X.2005.02351.x pmid: 15773853 |
[54] |
Zhang HY, Yu PL, Zhao JH, et al. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance[J]. New Phytol, 2018, 217(2): 799-812.
doi: 10.1111/nph.14858 pmid: 29105094 |
[55] | Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant J, 2008, 53(5): 731-738. |
[56] |
Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility[J]. BMC Plant Biol, 2010, 10: 64.
doi: 10.1186/1471-2229-10-64 pmid: 20388194 |
[57] |
Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17): 2873-2881.
doi: 10.1242/dev.031658 pmid: 19666819 |
[58] |
Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena[J]. Plant Physiol, 2014, 164(2): 1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688 |
[59] | Liu N, Yang JH, Guo SG, et al. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing[J]. PLoS One, 2013, 8(2): e57359. |
[60] |
Kundariya H, Yang XD, Morton K, et al. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants[J]. Nat Commun, 2020, 11: 5343.
doi: 10.1038/s41467-020-19140-x pmid: 33093443 |
[61] | Spanò R, Mascia T, Kormelink R, et al. Grafting on a non-transgenic tolerant tomato variety confers resistance to the infection of a Sw5-breaking strain of tomato spotted wilt virus via RNA silencing[J]. PLoS One, 2015, 10(10): e0141319. |
[62] |
Zhang GH, Mao ZC, Wang Q, et al. Comprehensive transcriptome profiling and phenotyping of rootstock and scion in a tomato/potato heterografting system[J]. Physiol Plant, 2019, 166(3): 833-847.
doi: 10.1111/ppl.12858 pmid: 30357855 |
[63] |
Li WJ, Chen SM, Liu Y, et al. Long-distance transport RNAs between rootstocks and scions and graft hybridization[J]. Planta, 2022, 255(5): 96.
doi: 10.1007/s00425-022-03863-w pmid: 35348893 |
[64] |
Cheng SLH, Xu HY, Ng JHT, et al. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency[J]. Nat Plants, 2023, 9(10): 1598-1606.
doi: 10.1038/s41477-023-01521-x pmid: 37735255 |
[65] |
Notaguchi M. Identification of phloem-mobile mRNA[J]. J Plant Res, 2015, 128(1): 27-35.
doi: 10.1007/s10265-014-0675-6 pmid: 25516498 |
[66] | Notaguchi M, Wolf S, Lucas WJ. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture[J]. J Integr Plant Biol, 2012, 54(10): 760-772. |
[67] | Melnyk CW, Molnar A, Bassett A, et al. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana[J]. Curr Biol, 2011, 21(19): 1678-1683. |
[68] | Borges F, Martienssen RA. The expanding world of small RNAs in plants[J]. Nat Rev Mol Cell Biol, 2015, 16(12): 727-741. |
[69] | 邓竹英. 拟南芥/本生烟草远缘嫁接亲和机理研究[D]. 荆州: 长江大学, 2022. |
Deng ZY. Grafting compatibility of Arabidopsis/nicotina benthamiana hetero-grafting system[D]. Jingzhou: Yangtze University, 2022. | |
[70] |
Molnar A, Melnyk CW, Bassett A, et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells[J]. Science, 2010, 328(5980): 872-875.
doi: 10.1126/science.1187959 pmid: 20413459 |
[71] |
Xie M, Yu B. siRNA-directed DNA methylation in plants[J]. Curr Genomics, 2015, 16(1): 23-31.
doi: 10.2174/1389202915666141128002211 pmid: 25937811 |
[72] | Kasai A, Sano T, Harada T. Scion on a stock producing siRNAs of potato spindle tuber viroid(PSTVd)attenuates accumulation of the viroid[J]. PLoS One, 2013, 8(2): e57736. |
[73] |
Wang J, Jiang LB, Wu RL. Plant grafting: how genetic exchange promotes vascular reconnection[J]. New Phytol, 2017, 214(1): 56-65.
doi: 10.1111/nph.14383 pmid: 27991666 |
[74] |
Tamiru M, Hardcastle TJ, Lewsey MG. Regulation of genome-wide DNA methylation by mobile small RNAs[J]. New Phytol, 2018, 217(2): 540-546.
doi: 10.1111/nph.14874 pmid: 29105762 |
[75] | Lewsey MG, Hardcastle TJ, Melnyk CW, et al. Mobile small RNAs regulate genome-wide DNA methylation[J]. Proc Natl Acad Sci USA, 2016, 113(6): E801-E810. |
[76] |
Varotto S, Tani E, Abraham E, et al. Epigenetics: possible applications in climate-smart crop breeding[J]. J Exp Bot, 2020, 71(17): 5223-5236.
doi: 10.1093/jxb/eraa188 pmid: 32279074 |
[77] | Wu R, Wang XR, Lin Y, et al. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants[J]. PLoS One, 2013, 8(4): e61995. |
[78] | Avramidou E, Kapazoglou A, Aravanopoulos FA, et al. Global DNA methylation changes in Cucurbitaceae inter-species grafting[J]. Crop Breed Appl Biotechnol, 2015, 15(2): 112-116. |
[79] | Cao LW, Yu NN, Li JX, et al. Heritability and reversibility of DNA methylation induced by in vitro grafting between Brassica juncea and B. oleracea[J]. Sci Rep, 2016, 6: 27233. |
[80] | Fuentes-Merlos MI, Bamba M, Sato S, et al. Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants[J]. DNA Res, 2023, 30(4): dsad016. |
[81] | Cerruti E, Gisbert C, Drost HG, et al. Grafting vigour is associated with DNA de-methylation in eggplant[J]. Hortic Res, 2021, 8(1): 241. |
[82] |
Xanthopoulou A, Tsaballa A, Ganopoulos I, et al. Intra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L.[J]. Plant Growth Regul, 2019, 87(1): 93-108.
doi: 10.1007/s10725-018-0456-7 |
[83] | 曹丽雯. 榨菜与紫甘蓝嵌合体后代变异性状发生的分子机理研究[D]. 杭州: 浙江大学, 2018. |
Cao LW. Studies on the molecular mechanism of phenotypic variations in the progenies of chimeras produced by in vitro grafting between Brassica juncea and B. Oleracea[D]. Hangzhou: Zhejiang University, 2018. | |
[84] | Zhang XY, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6): 1189-1201. |
[85] | Li XJ, Wang Y, Zhang LL, et al. Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea[J]. J Exp Bot, 2013, 64(16): 4851-4862. |
[86] |
Li CH, Li YS, Bai LQ, et al. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level[J]. Physiol Plant, 2014, 151(4): 406-422.
doi: 10.1111/ppl.12122 pmid: 24279842 |
[87] | Kumari A, Kumar J, Kumar A, et al. Grafting triggers differential responses between scion and rootstock[J]. PLoS One, 2015, 10(4): e0124438. |
[88] | Davoudi M, Song MF, Zhang MR, et al. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications[J]. Hortic Res, 2022, 9: uhab033. |
[89] | Zhang GH, Zhou JH, Song J, et al. Grafting-induced transcriptome changes and long-distance mRNA movement in the potato/Datura stramonium heterograft system[J]. Hortic Environ Biotechnol, 2022, 63(2): 229-238. |
[90] | Zhao LL, Liu AQ, Song TF, et al. Transcriptome analysis reveals the effects of grafting on sugar and α-linolenic acid metabolisms in fruits of cucumber with two different rootstocks[J]. Plant Physiol Biochem, 2018, 130: 289-302. |
[91] |
Liu N, Yang JH, Fu XX, et al. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing[J]. Mol Genet Genomics, 2016, 291(2): 621-633.
doi: 10.1007/s00438-015-1132-5 pmid: 26500104 |
[92] |
Spanò R, Ferrara M, Montemurro C, et al. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection[J]. Sci Rep, 2020, 10(1): 2538.
doi: 10.1038/s41598-020-59421-5 pmid: 32054920 |
[93] |
Wang H, Zhou P, Zhu WY, et al. De novo comparative transcriptome analysis of genes differentially expressed in the scion of homografted and heterografted tomato seedlings[J]. Sci Rep, 2019, 9(1): 20240.
doi: 10.1038/s41598-019-56563-z pmid: 31882801 |
[94] |
Ntatsi G, Savvas D, Papasotiropoulos V, et al. Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants[J]. Front Plant Sci, 2017, 8: 911.
doi: 10.3389/fpls.2017.00911 pmid: 28642763 |
[95] |
Liu C, Jia YH, He LX, et al. Integrated transcriptome and DNA methylome analysis reveal the biological base of increased resistance to gray leaf spot and growth inhibition in interspecific grafted tomato scions[J]. BMC Plant Biol, 2024, 24(1): 130.
doi: 10.1186/s12870-024-04764-8 pmid: 38383283 |
[96] | Thakur V, Sharma P, Kumar P, et al. Rootstock scion interaction studies on various horticultural attributes of pomato grafts under protected structures[J]. Heliyon, 2024, 10(10): e30930. |
[97] | Tsaballa A, Athanasiadis C, Pasentsis K, et al. Molecular studies of inheritable grafting induced changes in pepper(Capsicum annuum)fruit shape[J]. Sci Hortic, 2013, 149: 2-8. |
[98] |
Tsaballa A, Pasentsis K, Darzentas N, et al. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper[J]. BMC Plant Biol, 2011, 11: 46.
doi: 10.1186/1471-2229-11-46 pmid: 21401913 |
[99] |
Haroldsen VM, Szczerba MW, Aktas H, et al. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement[J]. Front Plant Sci, 2012, 3: 39.
doi: 10.3389/fpls.2012.00039 pmid: 22645583 |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | WU Xiao, ZHUANG Zhan-wei, MA Xiao-li, HUANG Si-xiu, LI Zi-cong, XU Zheng. Research Progress on the Nuclear Reprogramming After Somatic Cells Nuclear Transfer in Mammalian [J]. Biotechnology Bulletin, 2019, 35(11): 187-194. |
[3] | PANG Qing-xiao, LIANG Quan-feng, QI Qing-sheng. Application of Switch for Synthetic Biology in Metabolic Engineering [J]. Biotechnology Bulletin, 2017, 33(1): 58-64. |
[4] |
Chen Hongwei, Li Yinglun |
[5] | Li Hong. Molecular Mechanism of Genomic Stability and iPS Cells Reprogramming [J]. Biotechnology Bulletin, 2013, 29(12): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||