Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (11): 187-194.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0168
Previous Articles Next Articles
WU Xiao, ZHUANG Zhan-wei, MA Xiao-li, HUANG Si-xiu, LI Zi-cong, XU Zheng
Received:
2019-03-01
Online:
2019-11-26
Published:
2019-11-19
WU Xiao, ZHUANG Zhan-wei, MA Xiao-li, HUANG Si-xiu, LI Zi-cong, XU Zheng. Research Progress on the Nuclear Reprogramming After Somatic Cells Nuclear Transfer in Mammalian[J]. Biotechnology Bulletin, 2019, 35(11): 187-194.
[1] Rodriguez-Osorio N, Urrego R, Cibelli JB, et al.Reprogramming mammalian somatic cells[J]. Theriogenology, 2012, 78(9):1869-1886. [2] Liu Z, Cai Y, Wang Y, et al.Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 2018, 174(1):881-887. [3] Young LE, Fairburn HR.Improving the safety of embryo technologies:possible role of genomic imprinting[J]. Theriogenology, 2000, 53(2):627-648. [4] Ogura A, Inoue K, Wakayama T.Recent advancements in cloning by somatic cell nuclear transfer[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609):20110329. [5] Kishigami S, Wakayama S, Hosoi Y, et al.Somatic cell nuclear transfer:infinite reproduction of a unique diploid genome[J]. Exp Cell Res, 2008, 314(9):1945-1950. [6] Campbell KH, Loi P, Otaegui PJ, et al.Cell cycle co-ordination in embryo cloning by nuclear transfer[J]. Rev Reprod, 1996, 1(1):40-46. [7] Matoba S, Zhang Y.Somatic cell nuclear transfer reprogramming:mechanisms and applications[J]. Cell Stem Cell, 2018, 23(4):471-485. [8] Ahmed K, Dehghani H, Rugg-Gunn P, et al.Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo[J]. PLoS One, 2010, 5(5):e10531. [9] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [10] Chronis C, Fiziev P, Papp B, et al.Cooperative binding of transcription factors orchestrates reprogramming[J]. Cell, 2017, 168(3):442-459. [11] Hussein SM, Puri MC, Tonge PD, et al.Genome-wide characterization of the routes to pluripotency[J]. Nature, 2014, 516(7530):198-206. [12] Djekidel MN, Inoue A, Matoba S, et al.Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent[J]. Cell Rep, 2018, 23(7):1939-1947. [13] Li D, Liu J, Yang X, et al.Chromatin accessibility dynamics during iPSC reprogramming[J]. Cell Stem Cell, 2017, 21(6):819-833. [14] He YF, Li BZ, Li Z, et al.Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA[J]. Science, 2011, 333(6047):1303-1307. [15] Iqbal K, Jin SG, Pfeifer GP, et al.Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine[J]. Proc Natl Acad Sci USA, 2011, 108(9):3642-3647. [16] Guo F, Li X, Liang D, et al.Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote[J]. Cell Stem Cell, 2014, 15(4):447-459. [17] Peat JR, Reik W.Incomplete methylation reprogramming in SCNT embryos[J]. Nat Genet, 2012, 44(9):965-966. [18] Sun L, Wu KL, Zhang D, et al.Increased cleavage rate of human nuclear transfer embryos after 5-aza-2’-deoxycytidine treatment[J]. Reprod Biomed Online, 2012, 25(4):425-433. [19] Jones KL, Hill J, Shin TY, et al.DNA hypomethylation of karyoplasts for bovine nuclear transplantation[J]. Mol Reprod Dev, 2001, 60(2):208-213. [20] Yan JH, Zhu J, Xie BT, et al.Treating cloned embryos, but not donor cells, with 5-aza-2’-deoxycytidine enhances the developmental competence of porcine cloned embryos[J]. J Reprod Dev, 2013, 59(5):442. [21] Cao H, Li J, Su W, et al.Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos[J]. Reprod Fertil Dev, 2018, 31(2):357-365. [22] Zhai Y, Zhang Z, Yu H, et al.Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs[J]. Cell Physiol Biochem, 2018, 50(4):1376-1397. [23] Gu TP, Guo F, Yang H, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]. Nature, 2011, 477(7366):606-610. [24] Wossidlo M, Nakamura T, Lepikhov K, et al.5-Hydroxymethylcyto-sine in the mammalian zygote is linked with epigenetic reprogram-ming[J]. Nat Commun, 2011, 2:241. [25] Han C, Deng R, Mao T, et al.Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency[J]. FEBS J, 2018, 285(14):2708-2723. [26] Gao R, Wang C, Gao Y, et al.Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos[J]. Cell Stem Cell, 2018, 23(3):426-435. [27] Eckersley-Maslin MA, Svensson V, Krueger C, et al.MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs[J]. Cell Rep, 2016, 17(1):179-192. [28] Yun M, Wu J, Workman JL, et al.Readers of histone modifications[J]. Cell Res, 2011, 21(4):564-578. [29] Teperek M, Miyamoto K.Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes[J]. Reprod Med Biol, 2013, 12:133-149. [30] Hazzouri M, Pivot-Pajot C, Faure AK, et al.Regulated hyperacetylation of core histones during mouse spermatogenesis:involvement of histone deacetylases[J]. Eur J Cell Biol, 2000, 79(12):950-960. [31] Wee G, Koo DB, Song BS, et al.Inheritable histone H4 acetylation of somatic chromatins in cloned embryos[J]. J Biol Chem, 2006, 281(9):6048-6057. [32] Iager AE, Ragina NP, Ross PJ, et al.Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos[J]. Cloning Stem Cells, 2008, 10(3):371-379. [33] Bui HT, Wakayama S, Kishigami S, et al.Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos[J]. Biol Reprod, 2010, 83(3):454-463. [34] Van Thuan N, Bui HT, Kim JH, et al.The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice[J]. Reproduction, 2009, 138(2):309-317. [35] Jin JX, Lee S, Taweechaipaisankul A, et al.The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos[J]. Cell Physiol Biochem, 2017, 41(3):1255-1266. [36] Jin L, Guo Q, Zhu HY, et al.Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos[J]. Mol Reprod Dev, 2017, 84(4):340-346. [37] Enright BP, Kubota C, Yang X, et al.Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine[J]. Biol Reprod, 2003, 69(3):896-901. [38] Wang YS, Xiong XR, An ZX, et al.Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2 / -deoxycytidine and trichostatin A[J]. Theriogenology, 2011, 75(5):819-825. [39] Yuta T, Yoko K, Yukio T.The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine[J]. Zygote, 2009, 17(2):109-115. [40] Matoba S, Liu Y, Lu F, et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 2014, 159(4):884-895. [41] Chung YG, Matoba S, Liu Y, et al.Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J]. Cell Stem Cell, 2015, 17(6):758-766. [42] Liu X, Wang Y, Gao Y, et al.H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J]. Development, 2018, 145(4):v158261. [43] Ruan D, Peng J, Wang X, et al.XIST derepression in active x chromosome hinders pig somatic cell nuclear transfer[J]. Stem Cell Reports, 2018, 10(2):494-508. [44] Yang X, Hu B, Hou Y, et al.Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages[J]. Cell Research, 2018, 28(5):593-596. [45] Inoue A, Jiang L, Lu F, et al.Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547(7664):419-424. [46] Matoba S, Wang H, Jiang L, et al.Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development[J]. Cell Stem Cell, 2018, 23(3):343-354. [47] Ferguson-Smith AC.Genomic imprinting:the emergence of an epigenetic paradigm[J]. Nat Rev Genet, 2011, 12(8):565-575. [48] Wei Y, Zhu J, Huan Y, et al.Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets[J]. Cell Reprogram, 2010, 12(2):213-222. [49] Yang L, Chavatte-Palmer P, Kubota C, et al.Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones[J]. Mol Reprod Dev, 2005, 71(4):431-438. [50] Hiroaki O, Shogo M, Takeshi N, et al.RNA sequencing-based identification of aberrant imprinting in cloned mice[J]. Hum Mol Genet, 2014, 23(4):992-1001. [51] Yu D, Wang J, Zou H, et al.Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning[J]. Proc Natl Acad Sci USA, 2018, 115(47):11071-11080. [52] Inoue A, Jiang L, Lu F, et al.Genomic imprinting of Xist by maternal H3K27me3[J]. Genes Dev, 2017, 31(19):1927-1932. [53] Gruneberg H.Gene action in the mammalian X-chromosome[J]. Genet Res, 1967, 9(3):343-357. [54] Nolen LD, Gao S, Han Z, et al.X chromosome reactivation and regulation in cloned embryos[J]. Dev Biol, 2005, 279(2):525-540. [55] Inoue K, Kohda T, Sugimoto M, et al.Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer[J]. Science, 2010, 330(6003):496-499. [56] Matoba S, Inoue K, Kohda T, et al.RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos[J]. Proc Natl Acad Sci USA, 2011, 108(51):20621-20626. [57] Zeng F, Huang Z, Yuan Y, et al.Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos[J]. J Reprod Dev, 2016, 62(6):591-597. [58] Fukuda A, Tomikawa J, Miura T, et al.The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice[J]. Nat Commun, 2014 5:5464. [59] Shiels PG, Kind AJ, Campbell KH, et al.Analysis of telomere lengths in cloned sheep[J]. Nature, 1999, 399(6734):316-317. [60] Liu HJ, Peng H, Hu CC, et al.Effects of donor cells’ sex on nuclear transfer efficiency and telomere lengths of cloned goats[J]. Reprod Domest Anim, 2016, 51(5):789-794. [61] Burgstaller JP, Brem G.Aging of cloned animals:a mini-review[J]. Gerontology, 2017, 63(5):417-425. [62] Schoeftner S, Blasco MA.Chromatin regulation and non-coding RNAs at mammalian telomeres[J]. Semin Cell Dev Biol, 2010, 21(2):186-193. [63] Marion RM, Blasco MA.Telomere rejuvenation during nuclear reprogramming[J]. Curr Opin Genet Dev, 2010, 20(2):190-196. [64] Guo F, Li L, Li J, et al.Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J]. Cell Res, 2017, 27(8):967-988. [65] Kopp F, Mendell JT.Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407. [66] Wu FR, Liu Y, Wu QQ, et al.Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos[J]. BMC Genomics, 2018, 19(1):631-644. [67] Fu B, Ma H, Liu D.Endogenous retroviruses function as gene expression regulatory elements during mammalian pre-implantation embryo development[J]. Int J Mol Sci, 2019, 20(3):790-807. [68] Schiebinger G, Shu J, Tabaka M, et al.Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming[J]. Cell, 2019, 176(4):928-943. |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | ZENG Hong, ZENG Rui-lin, FU Wei, JI Wen-hui, LAN Dao-liang. Research Progress in the Application and Establishment of Bovine Induced Pluripotent Stem Cells [J]. Biotechnology Bulletin, 2023, 39(5): 130-141. |
[3] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
[4] | GU Shan, ZHAO Gao-ping, LI Xi-he. Research Progress on Cell Reprogramming Induced by Small Molecule Compounds [J]. Biotechnology Bulletin, 2018, 34(1): 79-83. |
[5] | ZHANG Hong-yan, XIN Ji-ge. Research Progress on the Technology of Pig Somatic Cell Nuclear Transfer [J]. Biotechnology Bulletin, 2016, 32(8): 41-46. |
[6] | AO Xu-dong ,SA Ru-la, WANG Jie, WANG Hui-min ,YU Hai-quan. The Effect of DNA Methyltransferase Inhibitor 5-Aza-CdR on AID Gene-modified Bovine Fetal Fibroblasts [J]. Biotechnology Bulletin, 2016, 32(8): 103-112. |
[7] | Zhou Zhenning. Direct Reprogramming of Somatic Cells into Neurons and Neural Stem Cells [J]. Biotechnology Bulletin, 2015, 31(7): 26-32. |
[8] | Xu Kai, Chen Xia, Gao Shaorong. The Progress of Induced Pluripotent Stem Cells Research in China [J]. Biotechnology Bulletin, 2015, 31(4): 72-81. |
[9] | Song Weihua, Liu Kun, Zhao Tongbiao. Progress in Induced Pluripotent Stem Cells [J]. Biotechnology Bulletin, 2014, 0(5): 1-7. |
[10] | Shen Xinyi, Song Kun, Yang Lishan, Xiao Xiong, Zhang Dapeng, Yang Bo, Li Yuemin. Progress on Oocytes Extracts-mediated Derivation of Pluripotent Stem Cells from Somatic Cells [J]. Biotechnology Bulletin, 2014, 0(12): 24-28. |
[11] | Li Hong. Molecular Mechanism of Genomic Stability and iPS Cells Reprogramming [J]. Biotechnology Bulletin, 2013, 0(12): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||