Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 103-109.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0433
Previous Articles Next Articles
YAO Xue-chun1,2,3(
), LI Lei1,2,3, WANG Zhi-xian2,3, SHENG Chang-zhong2,3, ZHOU Zeqi2,3(
), TAN Cherie S1(
)
Received:2024-05-09
Online:2025-01-26
Published:2025-01-22
Contact:
ZHOU Zeqi, TAN Cherie S
E-mail:yaoxuechun1987@126.com;zeqizhou8888@dynamiker.com;Cherie.tan@tju.edu.cn
YAO Xue-chun, LI Lei, WANG Zhi-xian, SHENG Chang-zhong, ZHOU Zeqi, TAN Cherie S. A CRISPR-Cas12a-based Detection Method for Respiratory Syncytial Virus[J]. Biotechnology Bulletin, 2025, 41(1): 103-109.
| 名称Name | 序列 Sequence(5'-3') |
|---|---|
| RSV-F | ATGGCTCTTAGCAAAGTCAAGTTGAATGATAC |
| RSV-R1 | GTGAATTTATGATTAGCATCTTCTGTGATTAAT |
| RSV-R2 | ATTTATGATTAGCATCTTCTGTGATTAATAACAT |
| RSV-R3 | CTTCCTAATCTAGACATAGCATATAACATACCT |
| RSV-R4 | GTGTCTTCTCTTCCTAATCTAGACATAGCATAT |
| RSV-R2J | ATTTATGATTAGCATCTTCTGTGATTAATARCAT |
| RSV-R3J | CTTCCTAATCTAGACATAGCATATARCATACCT |
| RSV-crRNA1 | UAAUUUCUACUAAGUGUAGAUUGCACAUCAUAAUUAGGAGU |
| RSV-crRNA2 | UAAUUUCUACUAAGUGUAGAUUGCACAUCAUAAUUGGGAGU |
| RSVA N基因 | OP890340.1 |
| RSVB N基因 | MZ516051.1 |
| ssDNA reporter | 6-FAM-TTAATT-BHQ1 |
Table 1 Sequence information of ERA primers and crRNA
| 名称Name | 序列 Sequence(5'-3') |
|---|---|
| RSV-F | ATGGCTCTTAGCAAAGTCAAGTTGAATGATAC |
| RSV-R1 | GTGAATTTATGATTAGCATCTTCTGTGATTAAT |
| RSV-R2 | ATTTATGATTAGCATCTTCTGTGATTAATAACAT |
| RSV-R3 | CTTCCTAATCTAGACATAGCATATAACATACCT |
| RSV-R4 | GTGTCTTCTCTTCCTAATCTAGACATAGCATAT |
| RSV-R2J | ATTTATGATTAGCATCTTCTGTGATTAATARCAT |
| RSV-R3J | CTTCCTAATCTAGACATAGCATATARCATACCT |
| RSV-crRNA1 | UAAUUUCUACUAAGUGUAGAUUGCACAUCAUAAUUAGGAGU |
| RSV-crRNA2 | UAAUUUCUACUAAGUGUAGAUUGCACAUCAUAAUUGGGAGU |
| RSVA N基因 | OP890340.1 |
| RSVB N基因 | MZ516051.1 |
| ssDNA reporter | 6-FAM-TTAATT-BHQ1 |
Fig. 1 Results of crRNA activity test A: Detected fluorescence results of CRISPR/Cas12a with crRNA1. B: Bar graph of detected end-point fluorescence value. *** P < 0.001. C, D: Co-detected results of crRNA1 and crRNA2. The same below
Fig. 2 Screeing of RT-ERA primer A, C: Deteced fluorescence curves of RT-ERA-CRISPR/Cas12a with different primers. B, D: Bar graph of end-point fluorescence value. **P < 0.01, *P < 0.05. The same below
Fig. 4 Specificity test results A: Fluorescence curves of specificity test. B: Bar graph of end-point fluorescence value in specificity test. C: Curves of fluorescence intensity in the specificity test of mixed samples. D: Bar graph of the fluorescence intensity in the speciticity test of mixed samples
| [1] |
Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis[J]. Lancet, 2010, 375(9725): 1545-1555.
doi: 10.1016/S0140-6736(10)60206-1 pmid: 20399493 |
| [2] |
Li Y, Wang X, Blau DM, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis[J]. Lancet, 2022, 399(10340): 2047-2064.
doi: 10.1016/S0140-6736(22)00478-0 pmid: 35598608 |
| [3] | Li ZJ, Zhang HY, Ren LL, et al. Etiological and epidemiological features of acute respiratory infections in China[J]. Nat Commun, 2021, 12(1): 5026. |
| [4] | Ren LS, Lin L, Zhang H, et al. Epidemiological and clinical characteristics of respiratory syncytial virus and influenza infections in hospitalized children before and during the COVID-19 pandemic in Central China[J]. Influenza Other Respir Viruses, 2023, 17(2): e13103. |
| [5] | Di Mattia G, Nenna R, Mancino E, et al. During the COVID-19 pandemic where has respiratory syncytial virus gone?[J]. Pediatr Pulmonol, 2021, 56(10): 3106-3109. |
| [6] | Foley DA, Yeoh DK, Minney-Smith CA, et al. The interseasonal resurgence of respiratory syncytial virus in Australian children following the reduction of coronavirus disease 2019-related public health measures[J]. Clin Infect Dis, 2021, 73(9): e2829-e2830. |
| [7] | Larsson E, Johansson S, Frøbert O, et al. Evaluation of the ImmuView RSV test for rapid detection of respiratory syncytial virus in adult patients with influenza-like symptoms[J]. Microbiol Spectr, 2021, 9(3): e0093721. |
| [8] |
Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment[J]. Clin Microbiol Rev, 2017, 30(1): 277-319.
pmid: 27903593 |
| [9] |
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and Archaea[J]. Science, 2010, 327(5962): 167-170.
doi: 10.1126/science.1179555 pmid: 20056882 |
| [10] |
Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
doi: 10.1126/science.aar6245 pmid: 29449511 |
| [11] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444.
doi: 10.1126/science.aaq0179 pmid: 29449508 |
| [12] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442.
doi: 10.1126/science.aam9321 pmid: 28408723 |
| [13] | Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4: 20. |
| [14] | Gong L, Wang XW, Li Z, et al. Integrated trinity test with RPA-CRISPR/Cas12a-fluorescence for real-time detection of respiratory syncytial virus A or B[J]. Front Microbiol, 2022, 13: 819931. |
| [15] | Gao HD, Du Y, Chai Q, et al. A multiplex recombinase polymerase amplification assay combined with CRISPR/Cas12a for the detection of respiratory syncytial virus and respiratory adenovirus[J]. J Int Med Res, 2024, 52(1): 3000605231223083. |
| [16] | Zhou HF, Tsou JH, Chinthalapally M, et al. Detection and differentiation of SARS-CoV-2, influenza, and respiratory syncytial viruses by CRISPR[J]. Diagnostics, 2021, 11(5): 823. |
| [17] |
Liu SH, Huang MQ, Xu YN, et al. CRISPR/Cas12a technology combined with RT-ERA for rapid and portable SARS-CoV-2 detection[J]. Virol Sin, 2021, 36(5): 1083-1087.
doi: 10.1007/s12250-021-00406-7 pmid: 34076866 |
| [18] |
Yang KK, Liang YQ, Li YN, et al. Reverse transcription-enzymatic recombinase amplification coupled with CRISPR-Cas12a for rapid detection and differentiation of PEDV wild-type strains and attenuated vaccine strains[J]. Anal Bioanal Chem, 2021, 413(30): 7521-7529.
doi: 10.1007/s00216-021-03716-7 pmid: 34686895 |
| [19] | Yang KK, Zhang WY, Xu L, et al. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection[J]. Poult Sci, 2022, 101(12): 102208. |
| [20] | Zhang WY, Xu L, Liu Q, et al. Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection[J]. Mol Cell Probes, 2021, 59: 101763. |
| [21] |
Shinoda H, Iida T, Makino A, et al. Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis[J]. Commun Biol, 2022, 5(1): 473.
doi: 10.1038/s42003-022-03433-6 pmid: 35614128 |
| [22] | Haddadin Z, Beveridge S, Fernandez K, et al. Respiratory syncytial virus disease severity in young children[J]. Clin Infect Dis, 2021, 73(11): e4384-e4391. |
| [23] | Borchers AT, Chang C, Gershwin ME, et al. Respiratory syncytial virus—a comprehensive review[J]. Clin Rev Allergy Immunol, 2013, 45(3): 331-379. |
| [24] | Paul R, Ostermann E, Wei QS. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases[J]. Biosens Bioelectron, 2020, 169: 112592. |
| [25] | Nie K, Qi SX, Zhang Y, et al. Evaluation of a direct reverse transcription loop-mediated isothermal amplification method without RNA extraction for the detection of human enterovirus 71 subgenotype C4 in nasopharyngeal swab specimens[J]. PLoS One, 2012, 7(12): e52486. |
| [26] | Zhu HL, Zhang HQ, Xu Y, et al. PCR past, present and future[J]. BioTechniques, 2020, 69(4): 317-325. |
| [27] | Glökler J, Lim TS, Ida J, et al. Isothermal amplifications - a comprehensive review on current methods[J]. Crit Rev Biochem Mol Biol, 2021, 56(6): 543-586. |
| [28] |
Lau HY, Botella JR. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection[J]. Front Plant Sci, 2017, 8: 2016.
doi: 10.3389/fpls.2017.02016 pmid: 29375588 |
| [29] | Zyrina NV, Antipova VN. Nonspecific synthesis in the reactions of isothermal nucleic acid amplification[J]. Biochem Mosc, 2021, 86(7): 887-897. |
| [30] | Hu YH, Wan ZZ, Mu YL, et al. A quite sensitive fluorescent loop-mediated isothermal amplification for rapid detection of respiratory syncytial virus[J]. J Infect Dev Ctries, 2019, 13(12): 1135-1141. |
| [31] |
Zasada AA, Zacharczuk K, Formińska K, et al. Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents[J]. Anal Biochem, 2018, 560: 60-66.
doi: S0003-2697(18)30708-5 pmid: 30217500 |
| [32] | Li HJ, Yang J, Wu GF, et al. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors[J]. Angew Chem Int Ed Engl, 2022, 61(32): e202203826. |
| [1] | HU Hai-yang, YING Wan-qin, HE Jun, LV Zhi-xian, XIE Xiao-ping, DENG Zhong-liang. Establishment and Application of ERA Real-time Fluorescence Method for Rapid Detection of Mycoplasma pneumoniae [J]. Biotechnology Bulletin, 2022, 38(9): 264-270. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||