Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 95-102.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0608
Previous Articles Next Articles
ZHANG Jing-an1(
), HU Xiao-long2, CAO Bei-bei2, LIAO Min2, SHU Chang-long3, ZHANG Jie3, WANG Kui2(
), CAO Hai-qun2(
)
Received:2024-06-27
Online:2025-01-26
Published:2025-01-22
Contact:
WANG Kui, CAO Hai-qun
E-mail:15855350220@163.com;wangkui01@ahau.edu.cn;caohaiqun@ahau.edu.cn
ZHANG Jing-an, HU Xiao-long, CAO Bei-bei, LIAO Min, SHU Chang-long, ZHANG Jie, WANG Kui, CAO Hai-qun. Construction and Characterization of Rapid Visual Expression Vector for Bacillus thuringiensis[J]. Biotechnology Bulletin, 2025, 41(1): 95-102.
Fig. 1 Construction diagram of p1Ac-GFP vector a: The vector construction diagram; b: the linker sequence; c: the schematic diagram of transforming TOP10 bacterial solution
| 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 20℃培养时间 Culture time for 20℃/h | 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 30℃培养时间 Culture time for 30℃/h | 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 37℃培养时间Culture time for 37℃/h |
|---|---|---|---|---|---|
| 1/5 | 12 | 1/5 | 12 | 1/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 2/5 | 12 | 2/5 | 12 | 2/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 3/5 | 12 | 3/5 | 12 | 3/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 4/5 | 12 | 4/5 | 12 | 4/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 5/5 | 12 | 5/5 | 12 | 5/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 |
Table 1 Optimized design of p1Ac-GFP expression conditions
| 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 20℃培养时间 Culture time for 20℃/h | 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 30℃培养时间 Culture time for 30℃/h | 装液量/锥形瓶体积(V/V) Liquid volume/Volume of the conical flask | 37℃培养时间Culture time for 37℃/h |
|---|---|---|---|---|---|
| 1/5 | 12 | 1/5 | 12 | 1/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 2/5 | 12 | 2/5 | 12 | 2/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 3/5 | 12 | 3/5 | 12 | 3/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 4/5 | 12 | 4/5 | 12 | 4/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 | |||
| 5/5 | 12 | 5/5 | 12 | 5/5 | 12 |
| 24 | 24 | 24 | |||
| 36 | 36 | 36 | |||
| 48 | 48 | 48 | |||
| 60 | 60 | 60 | |||
| 72 | 72 | 72 |
Fig. 2 SDS-PAGE analysis of Cry1Ac protein M: Marker; 1: p1Ac-GFP empty vector protein(negative control); 2-5: Cry1Ac protein expressed by p1Ac-GFP(bacterial solution, ultrasonic crushing bacterial solution, ultrasonic crushing supernatant, ultrasonic crushing precipitation, respectively); 6: Cry1Ac protein expressed by strain HD73(positive control)
| 蛋白Protein | 校正死亡率±SD Corrected mortality /% |
|---|---|
| p1Ac-GFP空载体蛋白 | 4.60 ± 3.98 b |
| p1Ac-GFP Cry1Ac蛋白 | 100.00 ± 0.00 a |
| HD73 Cry1Ac蛋白 | 96.55 ± 3.45 a |
Table 2 Bioassay of Cry1Ac proteins against P. xylostella
| 蛋白Protein | 校正死亡率±SD Corrected mortality /% |
|---|---|
| p1Ac-GFP空载体蛋白 | 4.60 ± 3.98 b |
| p1Ac-GFP Cry1Ac蛋白 | 100.00 ± 0.00 a |
| HD73 Cry1Ac蛋白 | 96.55 ± 3.45 a |
Fig. 3 Solubility and enzymatic hydrolysis of Cry1Ac protein M: Marker; 1: Cry1Ac protein expressed by HD73(soluble components after dissolution); 2: Cry1Ac protein expressed by HD73(trypsin activation); 3: Cry1Ac protein expressed by p1Ac-GFP(soluble components after dissolution); 4: Cry1Ac protein expressed by p1Ac-GFP(trypsin activation); 5: Cry1Ac protein expressed by p1Ac-GFP(insoluble components after dissolution)
Fig. 5 Optimization of condition when Cry1Ac expressed by p1Ac-GFP a: The effects of different culture time and bottling amount on fluorescence intensity and OD600nm of bacterial solution at 20℃; b: the effects of different culture time and bottling amount on fluorescence intensity and OD600nm of bacterial solution at 30℃; c: the effects of different culture time and bottling amount on fluorescence intensity and OD600nm of bacterial solution at 37℃
| [1] |
彭琦, 周子珊, 张杰. 苏云金芽胞杆菌杀虫晶体蛋白研究进展[J]. 中国生物防治学报, 2015, 31(5): 712-722.
doi: 10.16409/j.cnki.2095-039x.2015.05.011 |
| Peng Q, Zhou ZS, Zhang J. Research prospects in insecticidal crystal proteins of Bacillus thuringiensis[J]. Chin J Biol Contr, 2015, 31(5): 712-722. | |
| [2] | Caballero J, Jiménez-Moreno N, Orera I, et al. Unraveling the composition of insecticidal crystal proteins in Bacillus thuringiensis: a proteomics approach[J]. Appl Environ Microbiol, 2020, 86(12): e00476-20. |
| [3] | Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon, 2007, 49(4): 423-435. |
| [4] | Crickmore N, Berry C, Panneerselvam S, et al. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins[J]. J Invertebr Pathol, 2021, 186: 107438. |
| [5] | Ramalakshmi A, Udayasuriyan V, Balasubramani V. Molecular cloning of a new cry2A-type gene from Bacillus thuringiensis strain Nn10 and its expression studies[J]. Microb Pathog, 2022, 164: 105415. |
| [6] | Liang Z, Ali Q, Wang YJ, et al. Toxicity of Bacillus thuringiensis strains derived from the novel crystal protein Cry31Aa with high nematicidal activity against rice parasitic nematode Aphelenchoides besseyi[J]. Int J Mol Sci, 2022, 23(15): 8189. |
| [7] | Torres-Quintero MC, Arenas-Sosa I, Zuñiga-Navarrete F, et al. Characterization of insecticidal Cry1Cb2 protein from Bacillus thuringiensis toxic to Myzus persicae(Sulzer)[J]. J Invertebr Pathol, 2022, 189: 107731. |
| [8] |
Peng Q, Yu QY, Song FP. Expression of cry genes in Bacillus thuringiensis biotechnology[J]. Appl Microbiol Biotechnol, 2019, 103(4): 1617-1626.
doi: 10.1007/s00253-018-9552-x pmid: 30617537 |
| [9] | 郑文, 叶伟星, 彭东海, 等. 基于cry1Ac表达调控元件的苏云金芽孢杆菌表达载体构建[J]. 湖北农业科学, 2012, 51(2): 400-405. |
| Zheng W, Ye WX, Peng DH, et al. Construction of Bacillus thuringiensis expression vector by using regulatory elements from cry1Ac gene[J]. Hubei Agric Sci, 2012, 51(2): 400-405. | |
| [10] | Wang GJ, Zhang J, Song FP, et al. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests[J]. Appl Microbiol Biotechnol, 2006, 72(5): 924-930. |
| [11] | Kant S, Kapoor R, Banerjee N. Identification of a catabolite-responsive element necessary for regulation of the cry4A gene of Bacillus thuringiensis subsp. israelensis[J]. J Bacteriol, 2009, 191(14): 4687-4692. |
| [12] | 李朝睿, 杜立新, 彭琦, 等. 苏云金芽胞杆菌高效表达载体的构建[J]. 微生物学通报, 40(2): 350-361. |
| Li CR, Du LX, Peng Q, et al. Construction of high-level expression vector for Bacillus thuringiensis[J]. Microbiology China, 40(2): 350-361. | |
| [13] | 杜立新. 苏云金芽胞杆菌cry8E基因转录调控机制研究[D]. 保定: 河北农业大学, 2011. |
| Du LX. Study on transcriptional regulation of cry8E gene of Bacillus thuringiensis[D]. Baoding: Hebei Agricultural University, 2011. | |
| [14] |
Schnepf HE, Wong HC, Whiteley HR. Expression of a cloned Bacillus thuringiensis crystal protein gene in Escherichia coli[J]. J Bacteriol, 1987, 169(9): 4110-4118.
doi: 10.1128/jb.169.9.4110-4118.1987 pmid: 3040677 |
| [15] | 张春鸽, 赵灿, 束长龙, 等. 不同启动子表达Cry1Ie蛋白的特性分析[J]. 生物技术通报, 2012, 28(11): 192-196. |
| Zhang CG, Zhao C, Shu CL, et al. Analysis of expressed Cry1Ie protein initiated by different promoters[J]. Biotechnol Bull, 2012, 28(11): 192-196. | |
| [16] | 马君兰, 束长龙, 刘东明, 等. 大肠杆菌中利用苏云金芽胞杆菌强启动子p1Ac指导Cry1Ac蛋白表达的特性分析[J]. 生物技术通报, 2011, 27(2): 80-84. |
| Ma JL, Shu CL, Liu DM, et al. The nature analysis of expressed Cry1Ac protein initiated by strong promoter p1Ac from Bacillus thuringensis in E. coli[J]. Biotechnol Bull, 2011, 27(2): 80-84. | |
| [17] | Zhou ZS, Yang SJ, Shu CL, et al. Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain[J]. J Integr Agric, 2015, 14(8): 1598-1603. |
| [18] |
Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: ImageJ for the next generation of scientific image data[J]. BMC Bioinformatics, 2017, 18(1): 529.
doi: 10.1186/s12859-017-1934-z pmid: 29187165 |
| [19] |
王建, 杨小雪, 王丹丹, 等. 对草地贪夜蛾高毒力的苏云金芽胞杆菌菌株筛选与杀虫活性研究[J]. 中国生物防治学报, 2021, 37(4): 660-670.
doi: 10.16409/j.cnki.2095-039x.2021.03.008 |
| Wang J, Yang XX, Wang DD, et al. Screening and insecticidal activity of Bacillus thuringiensis strains with high toxicity against Spodoptera frugiperda[J]. Chin J Biol Contr, 2021, 37(4): 660-670. | |
| [20] |
Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein?[J]. J Bacteriol, 1995, 177(21): 6027-6032.
doi: 10.1128/jb.177.21.6027-6032.1995 pmid: 7592363 |
| [21] | Palma L, Muñoz D, Berry C, et al. Bacillus thuringiensis toxins: an overview of their biocidal activity[J]. Toxins, 2014, 6(12): 3296-3325. |
| [22] | Wang K, Shu CL, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: a review[J]. Arch Insect Biochem Physiol, 2019, 102(3): e21558. |
| [23] |
Baranek J, Banaszak M, Kaznowski A, et al. A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae[J]. Pest Manag Sci, 2021, 77(3): 1401-1408.
doi: 10.1002/ps.6157 pmid: 33099864 |
| [24] | Cao BB, Shu CL, Geng LL, et al. Cry78Ba1, one novel crystal protein from Bacillus thuringiensis with high insecticidal activity against rice planthopper[J]. J Agric Food Chem, 2020, 68(8): 2539-2546. |
| [25] | Geng C, Liu YY, Li MM, et al. Dissimilar crystal proteins Cry5Ca1 and Cry5Da1 synergistically act against Meloidogyne incognita and delay Cry5Ba-based nematode resistance[J]. Appl Environ Microbiol, 2017, 83(18): e03505-16. |
| [26] |
Zhang Q, Hua G, Adang MJ. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae[J]. Insect Sci, 2017, 24(5): 714-729.
doi: 10.1111/1744-7917.12401 pmid: 27628909 |
| [27] | Panwar BS, Kaur S. Structural characterization and heterologous expression of a new cyt gene cloned from Bacillus thuringiensis[J]. J Mol Model, 2019, 25(5): 136. |
| [28] |
Bukhari DAA, Shakoori AR. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli[J]. Mol Biol Rep, 2009, 36(7): 1661-1670.
doi: 10.1007/s11033-008-9366-5 pmid: 18821029 |
| [29] | Amadio AF, Navas LE, Sauka DH, et al. Identification, cloning and expression of an insecticide cry8 gene from Bacillus thuringiensis INTA Fr7-4[J]. J Mol Microbiol Biotechnol, 2013, 23(6): 401-409. |
| [30] | Sazhenskiy V, Zaritsky A, Itsko M. Expression in Escherichia coli of the native cyt1Aa from Bacillus thuringiensis subsp. israelensis[J]. Appl Environ Microbiol, 2010, 76(10): 3409-3411. |
| [31] |
Reyaz AL, Arulselvi PI. Cloning, characterization and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain SWK1 native to Himalayan valley Kashmir[J]. J Invertebr Pathol, 2016, 136: 1-6.
doi: 10.1016/j.jip.2016.02.005 pmid: 26906447 |
| [32] | 余宗兰, 贺利业, 龚莉, 等. 苏云金芽胞杆菌cry1Ie新基因的克隆、表达与生物活性测定[J]. 植物保护学报, 2016, 43(2): 201-206. |
| Yu ZL, He LY, Gong L, et al. Cloning, expression, and biological activity of a new cry1Ie gene from Bacillus thuringiensis strain[J]. J Plant Prot, 2016, 43(2): 201-206. | |
| [33] | 张月, 李海涛, 刘荣梅, 等. 苏云金芽胞杆菌cry2Ab34基因的克隆、表达和杀虫活性分析[J]. 生物技术通报, 2017, 33(4): 185-190. |
| Zhang Y, Li HT, Liu RM, et al. Cloning, expression, and insecticidal activities of gene cry2Ab34 from Bacillus thuringiensis[J]. Biotechnol Bull, 2017, 33(4): 185-190. | |
| [34] |
Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiol Rev, 2013, 37(1): 3-22.
doi: 10.1111/j.1574-6976.2012.00341.x pmid: 22540421 |
| [35] |
Paulmurugan R, Gambhir SS. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals[J]. Cancer Res, 2005, 65(16): 7413-7420.
pmid: 16103094 |
| [1] | RAO Jun, ZHAO Chen, LI Duan-hua, LIAO Hao, HUANG Jia-yu, WANG Lu. Application of Auto-induction Strategy in Ergothioneine Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(1): 333-346. |
| [2] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
| [3] | WANG Zhou, YU Jie, WANG Jin-hua, WANG Yong-ze, ZHAO Xiao. Anaerobic Expression of Lactate Dehydrogenase to Improve the D-lactic Acid Optical Purity Procluced by Escherichia coli [J]. Biotechnology Bulletin, 2024, 40(5): 290-299. |
| [4] | ZHANG Zhen, LI Qing, XU Jing, CHEN Kai-yuan, ZHANG Chun-zhi, ZHU Guang-tao. Construction and Application of Potato Mitochondrial Targeted Expression Vector [J]. Biotechnology Bulletin, 2024, 40(5): 66-73. |
| [5] | ZHUANG Ke, LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling. Transfer of Antibiotic-resistance Gene AmpR by Escherichia coli DH5α Through Outer Membrane Vesicles [J]. Biotechnology Bulletin, 2024, 40(12): 275-281. |
| [6] | YANG Hong-yan, HAN Xiao, YANG Jian-jun. Scaling up Production of pDNA Plasmids in Disposable Bioreactors [J]. Biotechnology Bulletin, 2024, 40(1): 168-175. |
| [7] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
| [8] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
| [9] | WU Li-dan, RAN Xue-qin, NIU Xi, HUANG Shi-hui, LI Sheng, WANG Jia-fu. Genome Comparison and Virulence Factor Analysis of Pathogenic Escherichia coli from Porcine [J]. Biotechnology Bulletin, 2023, 39(12): 287-299. |
| [10] | LI Yi-ya, WU Yi-fan, DING Neng-shui, FAN Xiao-ping, CHEN Fan. Establishment of a Luciferase-assisted Quantitative Method for Measuring Ultrasonic Disruption of Escherichia coli Cells [J]. Biotechnology Bulletin, 2023, 39(12): 90-98. |
| [11] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
| [12] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
| [13] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
| [14] | ZHAO Yan-kun, LIU Hui-min, MENG Lu, WANG Cheng, WANG Jia-qi, ZHENG Nan. Research Progress in Heteroresistance of Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(9): 59-71. |
| [15] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||