Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 74-84.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0796
Previous Articles Next Articles
JIN Su-kui1(
), GUO Qian-qian2, LIU Qiao-quan1,2(
), GAO Ji-ping2(
)
Received:2024-08-17
Online:2025-01-26
Published:2025-01-22
Contact:
LIU Qiao-quan, GAO Ji-ping
E-mail:skjin@yzu.edu.cn;qqliu@yzu.edu.cn;jpgao@yzu.edu.cn
JIN Su-kui, GUO Qian-qian, LIU Qiao-quan, GAO Ji-ping. A Simplified Method for Extracting Genomic DNA from Rice Leaves[J]. Biotechnology Bulletin, 2025, 41(1): 74-84.
Fig. 1 Basic process of extracting genomic DNA from rice leaves using the simplified TPS method A: Rice seedling leaves were collected using a 2 mL centrifuge tube. B: Add grinding steel balls to the centrifugal tube using customized steel bar. C: Grinding the blade using an automatic grinding instrument. D: Homogenate of lysed leaf tissue
| 引物名称Primer name | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') | 产物大小Product size/bp |
|---|---|---|---|
| OsACTIN1 | CCTTCAACACCCCTGCTATG | TGAGTAACCACGCTCCGTCA | 470 |
| STS-1 | CATGCTAGTAAGCAAAGGGCAACG | TTGCACGTCCAACTGTCCAAGC | 229 |
| HPT | GCTTTCAGCTTCGATGTAGGAGG | TTTCCACTATCGGCGAGTACTTC | 884 |
| OsNAP | AGTACCCACCCTCACAGCTC | AGTTGGTCTTGGTGCCCTTG | 319 |
| Wx pro | CTACTAGATCCGCTGCCGCC | GCAGGTCACAGCATTTATCTAAGC | 661 |
Table 1 Nucleotide sequences of primers used in this study
| 引物名称Primer name | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') | 产物大小Product size/bp |
|---|---|---|---|
| OsACTIN1 | CCTTCAACACCCCTGCTATG | TGAGTAACCACGCTCCGTCA | 470 |
| STS-1 | CATGCTAGTAAGCAAAGGGCAACG | TTGCACGTCCAACTGTCCAAGC | 229 |
| HPT | GCTTTCAGCTTCGATGTAGGAGG | TTTCCACTATCGGCGAGTACTTC | 884 |
| OsNAP | AGTACCCACCCTCACAGCTC | AGTTGGTCTTGGTGCCCTTG | 319 |
| Wx pro | CTACTAGATCCGCTGCCGCC | GCAGGTCACAGCATTTATCTAAGC | 661 |
| 方法 Method | 使用试剂及仪器Reagents and instruments used | 步骤 Step | 耗时 Time/h | 纯度 Purity | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 液氮研磨 Liquid nitrogen grounding | CTAB | Tris | HCl | EDTA | NaCl | 氯仿 Chloroform | 异戊醇 Isoamylol | KCl | 异丙醇 Isopropanol | 乙醇 Ethanol | 离心机 Centrifuge | ||||
| CTAB法CTAB method | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | ≥10 | 3-4 | 高 High |
| 传统TPS法Traditional TPS method | × | × | √ | √ | √ | × | × | × | √ | √ | √ | √ | ≥10 | 1-1.5 | 一般 Average |
| 简易TPS法Simplified TPS method | × | × | √ | √ | √ | × | × | × | √ | × | × | × | ≤6 | ≤0.5 | 低 Low |
Table 2 Comparison of three methods for extracting genomic DNA from plants
| 方法 Method | 使用试剂及仪器Reagents and instruments used | 步骤 Step | 耗时 Time/h | 纯度 Purity | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 液氮研磨 Liquid nitrogen grounding | CTAB | Tris | HCl | EDTA | NaCl | 氯仿 Chloroform | 异戊醇 Isoamylol | KCl | 异丙醇 Isopropanol | 乙醇 Ethanol | 离心机 Centrifuge | ||||
| CTAB法CTAB method | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | ≥10 | 3-4 | 高 High |
| 传统TPS法Traditional TPS method | × | × | √ | √ | √ | × | × | × | √ | √ | √ | √ | ≥10 | 1-1.5 | 一般 Average |
| 简易TPS法Simplified TPS method | × | × | √ | √ | √ | × | × | × | √ | × | × | × | ≤6 | ≤0.5 | 低 Low |
Fig. 2 Exploration and optimization of PCR conditions for extracting genomic DNA from rice leaves by the simplified TPS method A: The genomic DNA was extracted from the leaves of Nipponbare seedlings, and the rice OsACTIN1 gene fragment was used as the target gene for PCR amplification. The PCR reaction system and conditions were described in the Material and Method section. M stands for DNA marker(GoldBand DL5000(YEASEN BioTech)); the numbers at the top of the figure refers to the dilution ratio of DNA crude extract; the numbers on the left of the figure refer to band size(bp)of DNA marker; the numbers on the right of the figure refer to different individual replicates. B: Structural diagram of rice OsACTIN1 gene. The orange boxes with direction and the letters Ex-1/2/3/4 indicate exons, the black arrows with the letters P-F/R above indicate forward and reverse primers used in PCR amplification, respectively, and the dashed vertical lines with the number below indicate base positions. C: The partial peak maps of sequenced PCR products. The PCR products were obtained and sequenced under the 20-fold dilution of the genomic DNA, and the sequencing primer was the forward primer of OsACTIN1 gene used in PCR amplification. D: The sequences obtained by sequencing were aligned with the OsACTIN1gene. The letters on the black background indicate the same bases
Fig. 3 Comparison of rice genomic DNA extracted by the simplified TPS method, CTAB method, and traditional TPS method in genetic identification A: The genomic DNA was extracted from Koshihikari(K), Nona Bokra(N)and their F2 individuals, and the molecular marker STS-1 was used in genotyping. K and N refer to two parents respectively, and the number 1 to 12 refer to 12 individual plants. B: The HPT gene was detected in the OsNAC24 gD-OE transgenic plants under Nipponbare background. M refers to DNA marker, the DNA marker used in this experiment was DNA marker III(TIANGEN Biochemistry), and the number 1 to 12 refer to 12 individual plants, among which, 3 plants No. 2, 7, and 8 were negative. C: The wild-type Nipponbare plants were used to amplify the OsNAP gene, then the PCR product was digested by BamH I. M refers to DNA marker, the DNA marker used in this experiment was GoldBand DL5000(YEASEN BioTech); and the number from 1 to 12 at the top of the lane refer to 12 individual plants. The lane on the left of each single plant is the PCR product without digestion, and the lane on the right is the PCR product digested by the BamHI. D: Identification of transgenic plants with edited Wx promoter by sequencing in Nipponbare. The upper part of the figure is a schematic diagram of the Wx promoter, the lower left part of the figure are the sequences of target, and the lower right part of the figure is the corresponding sequencing peak. TSS stands for the transcription start site and ATG refers to the start codon. NIP: Nipponbare
Fig. 4 Stability detection of genomic DNA extracted by simplified TPS method The detection of OsACTIN1 and OsNAP genes was performed using genomic DNA of Nipponbare freshly extracted and stored at -20℃ for more than six months, respectively. M refers to DNA marker, the DNA marker used in this experiment is GoldBand DL5000(YEASEN BioTech), and the number 1 to 12 refer to 12 different individual plants
| [1] | Zheng KX, Cai YC, Chen WJ, et al. Development, identification, and application of a germplasm specific SCAR marker for Dendrobium officinale kimura et migo[J]. Front Plant Sci, 2021, 12: 669458. |
| [2] | 张紫量, 李旭鹏, 申君毅, 等. 植物DNA提取方法的研究进展[J]. 农业与技术, 2024, 44(14): 166-170. |
| Zhang ZL, Li XP, Shen JY, et al. Research progress of plant DNA extraction methods[J]. Agric Technol, 2024, 44(14): 166-170. | |
| [3] | Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton(Gossypium spp.)genomic DNA suitable for RFLP or PCR analysis[J]. Plant Mol Biol Report, 1993, 11(2): 122-127. |
| [4] | 李岩, 于海琳, 马晓彤, 等. 对CTAB法提取菠菜基因组DNA实验的优化设计[J]. 化工管理, 2023(14): 15-17. |
| Li Y, Yu HL, Ma XT, et al. Conditions research on CTAB extraction of spinach genome DNA[J]. Chem Enterp Manag, 2023(14): 15-17. | |
| [5] |
李金璐, 王硕, 于婧, 等. 一种改良的植物DNA提取方法[J]. 植物学报, 2013, 48(1): 72-78.
doi: 10.3724/SP.J.1259.2013.00072 |
| Li JL, Wang S, Yu J, et al. A modified CTAB protocol for plant DNA extraction[J]. Chin Bull Bot, 2013, 48(1): 72-78. | |
| [6] | 王珅, 范保杰, 刘长友, 等. 绿豆愈伤组织基因组DNA最佳提取方法的分析[J/OL]. 分子植物育种, 2024, 1-13. |
| Wang K, Fan BJ, Liu CY, et al. Analysis of the best extraction methods of genomic DNA from mung bean callus[J/OL]. Molecular Plant Breeding, 2024, 1-13. | |
| [7] | 张凤娟, 张满良, 朱水芳. 一种改进的水稻总DNA的快速提取方法[J]. 植物检疫, 2004, 18(6): 330-332. |
| Zhang FJ, Zhang ML, Zhu SF. An improved rapid method of plant total DNA extraction[J]. Plant Quar, 2004, 18(6): 330-332. | |
| [8] | 毕继安, 王芳, 张国芳, 等. 药用野生稻基因组DNA提取方法比较[J]. 安徽农业科学, 2023, 51(14): 86-89. |
| Bi JA, Wang F, Zhang GF, et al. Comparison of different extraction methods of genomic DNA from Oryza officinalis[J]. J Anhui Agric Sci, 2023, 51(14): 86-89. | |
| [9] | 苏代群. 水稻SSR分析快速提取总DNA法[J]. 种子世界, 2013(11): 28-30. |
| Su DQ. Rapid extraction of total DNA for rice SSR analysis[J]. Seed World, 2013(11): 28-30. | |
| [10] | 田孟祥, 宫彦龙, 张时龙, 等. 简便烘干在水稻叶片DNA大量提取中的应用[J]. 河南农业科学, 2020, 49(2): 52-57. |
| Tian MX, Gong YL, Zhang SL, et al. Application of simple drying in extraction of large amount of DNA from rice leaves[J]. J Henan Agric Sci, 2020, 49(2): 52-57. | |
| [11] | 马文东. 水稻基因组DNA提取方法的研究[J]. 黑龙江农业科学, 2014(1): 7-11. |
| Ma WD. Study on extraction method of rice genomic DNA[J]. Heilongjiang Agric Sci, 2014(1): 7-11. | |
| [12] | 蒋小刚, 王华, 周武先, 等. 白术叶片DNA提取方法的优化[J]. 安徽农业科学, 2023, 51(11): 128-131. |
| Jiang XG, Wang H, Zhou WX, et al. Optimization of DNA extraction method for Atractylodes macrocephala leaves[J]. J Anhui Agric Sci, 2023, 51(11): 128-131. | |
| [13] | 杨祥波. 优化的SDS法提取刺五加基因组的研究[J]. 吉林农业, 2015(21): 72-73. |
| Yang XB. Study on the extraction of Acanthopanax acanthopanax genome by optimized SDS method[J]. Agric Jilin, 2015(21): 72-73. | |
| [14] | 侯泽菁, 常廼滔. 用改良SDS法提取适于PCR扩增的小麦基因组DNA[J]. 江苏农业科学, 2014, 42(5): 49-51. |
| Hou ZJ, Chang NT. Using modified SDS method to extract wheat genomic DNA suitable for PCR amplification[J]. Jiangsu Agric Sci, 2014, 42(5): 49-51. | |
| [15] | 廖云蓉. 使用改良的SDS法提取银杏不同器官DNA的研究[J]. 现代园艺, 2012(11): 5, 78. |
| Liao YR. Study on the DNA extraction from different organs of Ginkgo biloba by improved SDS method[J]. Xiandai Hortic, 2012(11): 5, 78. | |
| [16] | 穆春华, 张发军, 李文才, 等. 玉米叶片基因组快速提取方法研究[J]. 玉米科学, 2010, 18(3): 170-172. |
| Mu CH, Zhang FJ, Li WC, et al. A method of genomic DNA extraction of maize[J]. J Maize Sci, 2010, 18(3): 170-172. | |
| [17] |
张友昌, 冯常辉, 别墅, 等. 改进的TPS法: 一种棉花叶片DNA快速提取方法[J]. 棉花学报, 2016, 28(4): 413-417.
doi: 10.11963/issn.1002-7807.201604014 |
|
Zhang YC, Feng CH, Bie S, et al. An improved TPS method for rapid DNA extraction from cotton leaves[J]. Cotton Sci, 2016, 28(4): 413-417.
doi: 10.11963/issn.1002-7807.201604014 |
|
| [18] | 王蕾, 赵新涛, 许梦琦, 等. 花生叶片DNA快速提取方法的优化[J]. 山东农业科学, 2014, 46(7): 11-14. |
| Wang L, Zhao XT, Xu MQ, et al. Optimization of rapid DNA extraction methods from peanut leaves[J]. Shandong Agric Sci, 2014, 46(7): 11-14. | |
| [19] |
姚丹, 闫伟, 关淑艳, 等. 高盐低pH值法提取大豆不同组织DNA的效果[J]. 河南农业科学, 2009, 38(12): 50-54.
doi: 10.3969/j.issn.1004-3268.2009.12.015 |
| Yao D, Yan W, Guan SY, et al. Extraction effect of genomic DNA from different tissues of soybean with high-salt low-pH methods[J]. J Henan Agric Sci, 2009, 38(12): 50-54. | |
| [20] | 许理文, 王凤格, 赵久然, 等. 高盐低pH值法提取玉米基因组DNA的研究[J]. 玉米科学, 2009, 17(1): 59-61, 70. |
| Xu LW, Wang FG, Zhao JR, et al. Studies on genomic DNA extraction of maize with high salt, low pH method[J]. J Maize Sci, 2009, 17(1): 59-61, 70. | |
| [21] | 郭娴, 张寒霜, 赵俊丽, 等. 高盐低pH值法提取棉花基因组DNA研究[C]// 中国棉花学会. 中国棉花学会2011年年会论文汇编, 2011: 1. |
| Guo X, Zhang H, Zhao J, et al. Studies on Genomic DNA Extraction of Cotton with High Salt, Low pH Method[C]. China Cotton Society, China Cotton Society 2011 annual meeting paper compilation, 2011: 1. | |
| [22] | 杨学珍, 刘晓雪, 宋健, 等. 改良高盐高pH法提取大豆DNA[J]. 大豆科学, 2020, 39(4): 549-554. |
| Yang XZ, Liu XX, Song J, et al. Extraction of soybean DNA by improved high salt and high pH method[J]. Soybean Sci, 2020, 39(4): 549-554. | |
| [23] | 孙利萍, 贾芝琪, 胡建斌, 等. 碱裂解法快速提取番茄DNA的研究[J]. 河南农业大学学报, 2012, 46(2): 136-138. |
| Sun LP, Jia ZQ, Hu JB, et al. Study on the rapid alkaline Lysis method of extracting tomato DNA[J]. J Henan Agric Univ, 2012, 46(2): 136-138. | |
| [24] | 吴则东, 王华忠, 倪洪涛. 不同碱裂解法快速提取甜菜大群体DNA的研究[J]. 中国糖料, 2013, 35(3): 32-34. |
| Wu ZD, Wang HZ, Ni HT. A rapid method for extract beet large group DNA in different alkaline Lysis[J]. Sugar Crops China, 2013, 35(3): 32-34. | |
| [25] |
王涛, 王超楠, 张红, 等. 大白菜基因组DNA快速提取方法的研究[J]. 华北农学报, 2017, 32(6): 67-72.
doi: 10.7668/hbnxb.2017.06.010 |
| Wang T, Wang CN, Zhang H, et al. Study on rapid extraction of genomic DNA from Chinese cabbage[J]. Acta Agric Boreali Sin, 2017, 32(6): 67-72. | |
| [26] | 赵国珍, 贾育林, 严宗卜, 等. 一种高效便捷的水稻DNA提取法及其应用[J]. 中国水稻科学, 2012, 26(4): 495-499. |
|
Zhao GZ, Jia YL, Yan ZB, et al. An efficient, economic, and rapid rice DNA extraction method and its application[J]. Chin J Rice Sci, 2012, 26(4): 495-499.
doi: 10.3969/j.issn.1001-7216.2012.04.016 |
|
| [27] | 李柯, 赵昆昆, 宁龙龙, 等. 花生DNA快速提取方法及应用[J]. 山东农业科学, 2019, 51(9): 68-72. |
| Li K, Zhao KK, Ning LL, et al. A rapid extraction method of peanut DNA and its application[J]. Shandong Agric Sci, 2019, 51(9): 68-72. | |
| [28] | 曹文波, 郑璐璐, 谢文海. 一种提取植物基因组DNA的方法——改良尿素法[J]. 华中师范大学学报: 自然科学版, 2008, 42(3): 448-451. |
| Cao WB, Zheng LL, Xie WH. The modification urea method: an improved method for plant DNA isolation[J]. J Huazhong Norm Univ Nat Sci, 2008, 42(3): 448-451. | |
| [29] | 郑卓, 李健, 圣忠华, 等. 高粱总DNA不同提取方法的比较[J]. 安徽农业科学, 2007, 35(36): 11758-11759. |
| Zheng Z, Li J, Sheng ZH, et al. Comparison of different extraction methods of total DNA from sorghum[J]. J Anhui Agric Sci, 2007, 35(36): 11758-11759. | |
| [30] | 石庆华, 姚正培, 张桦, 等. 4种提取鹰嘴豆基因组DNA方法的比较[J]. 新疆农业大学学报, 2009, 32(1): 64-67. |
| Shi QH, Yao ZP, Zhang H, et al. Comparison of four methods of DNA extraction from chickpea[J]. J Xinjiang Agric Univ, 2009, 32(1): 64-67. | |
| [31] | Selz J, Adam NR, Magrini CEM, et al. A field-capable rapid plant DNA extraction protocol using microneedle patches for botanical surveying and monitoring[J]. Appl Plant Sci, 2023, 11(3): e11529. |
| [32] | 王润语. 植物DNA提取试剂盒的研究及在检测转基因稻米上的应用[J]. 生物技术世界, 2016, 13(1): 1-3. |
| Wang RY. Study on plant extraction kit and its application in detecting transgenic rice[J]. Biotech World, 2016, 13(1): 1-3. | |
| [33] |
Güssow D, Clackson T. Direct clone characterization from plaques and colonies by the polymerase chain reaction[J]. Nucleic Acids Res, 1989, 17(10): 4000.
doi: 10.1093/nar/17.10.4000 pmid: 2734114 |
| [34] | Jin SK, Xu LN, Leng YJ, et al. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm[J]. Plant Biotechnol J, 2023, 21(11): 2224-2240. |
| [35] | 张红, 王超楠, 范伟强, 等. 植物基因组DNA的高效提取方法[J/OL]. 分子植物育种, 2022, 1-14. |
| Zhang H, Wang CN, Fan WQ, et al. Efficient extraction of plant genomic DNA[J/OL]. Molecular Plant Breeding, 2022, 1-14. | |
| [36] | 肖帅, 李鳞霞, 李海鸥. 一种高效的植物DNA提取和PCR扩增体系建立[J]. 亚热带植物科学, 2018, 47(3): 207-210. |
| Xiao S, Li LX, Li HO. An efficient plant DNA extraction and PCR amplification system[J]. Subtrop Plant Sci, 2018, 47(3): 207-210. | |
| [37] | 朱先飞, 韩仁长, 黄冠, 等. 油菜DNA快速高通量提取方法改良及应用[J]. 园艺与种苗, 2023, 43(8): 83-85. |
| Zhu XF, Han RH, Huang G, et al. Improvement and application of rapid and high-throughput DNA extraction method for rapeseed[J]. Hortic Seed, 2023, 43(8): 83-85. | |
| [38] | 田孟祥, 张时龙, 余本勋, 等. 一种应用PCR缓冲液快速制备水稻DNA模板的方法[J]. 分子植物育种, 2015, 13(2): 438-442. |
| Tian MX, Zhang SL, Yu BX, et al. A method by using PCR buffer to rapid prepare rice DNA template[J]. Mol Plant Breed, 2015, 13(2): 438-442. | |
| [39] | 王攀. 植物分子标记高通量快速检测技术的研究进展[J]. 中国种业, 2024(7): 17-22. |
| Wang P. Research progress on high-throughput rapid detection technology for plant molecular markers[J]. China Seed Ind, 2024(7): 17-22. | |
| [40] | 陈晓军, 王敬东, 宋海丽, 等. 一种简单、极快的植物叶片DNA提取方法[J]. 种子, 2018, 37(11): 26-29, 34. |
| Chen XJ, Wang JD, Song HL, et al. A simple and rapid method of DNA extraction from plant leaf[J]. Seed, 2018, 37(11): 26-29, 34. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||