Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 202-209.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0632
LI Jing-jing(
), HU Jin-hong, LIANG Wang-li, MA Yu-rong, LIANG Wen-yu, WANG Ling-xia(
)
Received:2024-07-03
Online:2025-02-26
Published:2025-02-28
Contact:
WANG Ling-xia
E-mail:l1210701444@163.com;lxwang@nxu.edu.cn
LI Jing-jing, HU Jin-hong, LIANG Wang-li, MA Yu-rong, LIANG Wen-yu, WANG Ling-xia. Differential Expression Analysis of Genes Related to NaCl Stress Response in Lycium barbarum 'Ningqi 1'[J]. Biotechnology Bulletin, 2025, 41(2): 202-209.
基因名称 Gene name | 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|---|
| actin | actin-F | GGTCCTCTTCCAGCCATCCAT |
| actin-R | TGAGCCACCACTGAGCACAA | |
| CIPK6 | CIPK6-F | CTTTCTCCCACACTCTTGCCCTTG |
| CIPK6-R | GCTTGAGGAGGTGGCGAAAACG | |
| MAPKKK18 | MAPKKK18-F | CGTATGTGTAGCTGTCACCAAGGC |
| MAPKKK18-R | GTCTTGTTCCGCTTCCTGCTCAG | |
| MAPKK2 | MAPKK2-F | GGCACCTCCTGAAATTCTCTCTGG |
| MAPKK2-R | CTGGCAAGCACATCTGGACTGG | |
| MAPK3 | MAPK3-F | GGCACCCCAACGGAATCTGATC |
| MAPK3-R | CTGCTAACTGCTGGCGTGGATG |
Table 1 Primers and names and sequences of reference genes
基因名称 Gene name | 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|---|
| actin | actin-F | GGTCCTCTTCCAGCCATCCAT |
| actin-R | TGAGCCACCACTGAGCACAA | |
| CIPK6 | CIPK6-F | CTTTCTCCCACACTCTTGCCCTTG |
| CIPK6-R | GCTTGAGGAGGTGGCGAAAACG | |
| MAPKKK18 | MAPKKK18-F | CGTATGTGTAGCTGTCACCAAGGC |
| MAPKKK18-R | GTCTTGTTCCGCTTCCTGCTCAG | |
| MAPKK2 | MAPKK2-F | GGCACCTCCTGAAATTCTCTCTGG |
| MAPKK2-R | CTGGCAAGCACATCTGGACTGG | |
| MAPK3 | MAPK3-F | GGCACCCCAACGGAATCTGATC |
| MAPK3-R | CTGCTAACTGCTGGCGTGGATG |
基因名称 Gene name | B vs A | C vs A | D vs A | 基因注释 Gene description | |||
|---|---|---|---|---|---|---|---|
差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | ||
| MAPK3 | 1.78 | 0 | -1.12 | 6.18E-108 | -1.61 | 1.84E-232 | 有丝分裂原活化蛋白激酶3 Mitogen-activated protein kinase 3 |
| MAPK4 | 1.48 | 2.88E-07 | 1.53 | 1.34E-09 | - | - | 有丝分裂原活化蛋白激酶4 Mitogen-activated protein kinase 4 |
| MAPKK2 | 1.17 | 2.04E-224 | - | - | - | - | 有丝分裂原活化蛋白激酶激酶2 Mitogen-activated protein kinase kinase 2 |
| MAPKKK18 | 4.88 | 0 | -3.63 | 2.30E-29 | -3.027 4 | 2.84E-32 | 有丝分裂原活化蛋白激酶激酶激酶18 Mitogen-activated protein kinase kinase kinase 18 |
| GPAT1 | 1.51 | 1.45E-75 | -0.27 | 0 | 0.67 | 5.03E-18 | 甘油-3-磷酸酰基转移酶1 Glycerol-3-phosphate acyltransferase 1 |
| GPAT6 | 1.05 | 5.12E-109 | - | - | - | - | 甘油-3-磷酸 2-O-酰基转移酶6 Glycerol-3-phosphate 2-O-acyltransferase 6 |
| PLDα1 | 1.85 | 0 | 1.53 | 8.54E-253 | 1.06 | 1.71E-106 | 磷脂酶D α1 Phospholipase D α1 |
| DGK1 | 2.89 | 2.25E-191 | 1.95 | 1.22E-76 | 1.04 | 6.46E-22 | 二酰基甘油激酶1 Diacylglycerol kinase 1 |
| CBL4 | 1.56 | 1.67E-19 | -1.13 | 3.77E-07 | 3.28 | 9.49E-248 | 钙调磷酸酶B样蛋白4 Calcineurin B-like protein 4 |
| CaM3 | - | - | 2.01 | 1.93E-25 | - | - | 钙调蛋白-3 Calmodulin-3 |
| CaM2 | - | - | 3.12 | 0 | - | - | 钙调蛋白-2 Calmodulin-2 |
| CaM | 0.64 | 5.68E-44 | 1.06 | 1.53E-170 | 1.06 | 4.64E-235 | 钙调蛋白 Calmodulin |
| CIPK9 | -0.34 | 9.32E-31 | - | - | - | - | CBL相互作用的丝氨酸/苏氨酸蛋白激酶9 CBL-interacting serine/threonine-protein kinase 9 |
| CIPK6 | -0.94 | 2.14E-15 | - | - | -1.48 | 7.62E-44 | CBL相互作用的丝氨酸/苏氨酸蛋白激酶6 CBL-interacting serine/threonine-protein kinase 6 |
Table 2 Differentially expressed genes related to signal transduction pathways under NaCl stress in L. barbarum 'Ningqi 1'
基因名称 Gene name | B vs A | C vs A | D vs A | 基因注释 Gene description | |||
|---|---|---|---|---|---|---|---|
差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | ||
| MAPK3 | 1.78 | 0 | -1.12 | 6.18E-108 | -1.61 | 1.84E-232 | 有丝分裂原活化蛋白激酶3 Mitogen-activated protein kinase 3 |
| MAPK4 | 1.48 | 2.88E-07 | 1.53 | 1.34E-09 | - | - | 有丝分裂原活化蛋白激酶4 Mitogen-activated protein kinase 4 |
| MAPKK2 | 1.17 | 2.04E-224 | - | - | - | - | 有丝分裂原活化蛋白激酶激酶2 Mitogen-activated protein kinase kinase 2 |
| MAPKKK18 | 4.88 | 0 | -3.63 | 2.30E-29 | -3.027 4 | 2.84E-32 | 有丝分裂原活化蛋白激酶激酶激酶18 Mitogen-activated protein kinase kinase kinase 18 |
| GPAT1 | 1.51 | 1.45E-75 | -0.27 | 0 | 0.67 | 5.03E-18 | 甘油-3-磷酸酰基转移酶1 Glycerol-3-phosphate acyltransferase 1 |
| GPAT6 | 1.05 | 5.12E-109 | - | - | - | - | 甘油-3-磷酸 2-O-酰基转移酶6 Glycerol-3-phosphate 2-O-acyltransferase 6 |
| PLDα1 | 1.85 | 0 | 1.53 | 8.54E-253 | 1.06 | 1.71E-106 | 磷脂酶D α1 Phospholipase D α1 |
| DGK1 | 2.89 | 2.25E-191 | 1.95 | 1.22E-76 | 1.04 | 6.46E-22 | 二酰基甘油激酶1 Diacylglycerol kinase 1 |
| CBL4 | 1.56 | 1.67E-19 | -1.13 | 3.77E-07 | 3.28 | 9.49E-248 | 钙调磷酸酶B样蛋白4 Calcineurin B-like protein 4 |
| CaM3 | - | - | 2.01 | 1.93E-25 | - | - | 钙调蛋白-3 Calmodulin-3 |
| CaM2 | - | - | 3.12 | 0 | - | - | 钙调蛋白-2 Calmodulin-2 |
| CaM | 0.64 | 5.68E-44 | 1.06 | 1.53E-170 | 1.06 | 4.64E-235 | 钙调蛋白 Calmodulin |
| CIPK9 | -0.34 | 9.32E-31 | - | - | - | - | CBL相互作用的丝氨酸/苏氨酸蛋白激酶9 CBL-interacting serine/threonine-protein kinase 9 |
| CIPK6 | -0.94 | 2.14E-15 | - | - | -1.48 | 7.62E-44 | CBL相互作用的丝氨酸/苏氨酸蛋白激酶6 CBL-interacting serine/threonine-protein kinase 6 |
Fig. 3 Relative expressions of differentially expressed genes related to signal transduction pathways under NaCl stress in L. barbarum 'Ningqi 1'Different small letters indicate significant difference (P<0.05) .The same below
| 1 | van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants [J]. Annu Rev Plant Biol, 2020, 71: 403-433. |
| 2 | Rahman MM, Mostofa MG, Keya SS, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. Int J Mol Sci, 2021, 22(19): 10733. |
| 3 | Tang RJ, Wang C, Li KL, et al. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries [J]. Trends Plant Sci, 2020, 25(6): 604-617. |
| 4 | 及华, 王琳, 张海新, 等. 药食同源植物‒‒枸杞 [J]. 现代农村科技, 2021(7): 125. |
| Ji H, Wang L, Zhang HX, et al. Lycium barbarum L., a homologous plant of medicine and food [J]. Modern Rural Technology, 2021(7): 125. | |
| 5 | 刘雪霞, 范文强, 焦慧慧, 等. 基于转录组测序的宁夏枸杞不同品种果实活性成分合成差异表达基因分析 [J]. 生物工程学报, 2023, 39(7): 3015-3036. |
| Liu XX, Fan WQ, Jiao HH, et al. Comparative analysis of differentially expressed genes for biosynthesis of active ingredients in fruits of different cultivars of Lycium barbarum L. based on transcriptome sequencing [J]. Chin J Biotechnol, 2023, 39(7): 3015-3036. | |
| 6 | 马晓蓉, 杨淑娟, 姚宁, 等. NaCl胁迫对宁夏枸杞叶和幼根显微及超微结构的影响 [J]. 西北植物学报, 2021, 41(12): 2087-2095. |
| Ma XR, Yang SJ, Yao N, et al. Effect of NaCl stress on the microstructure and ultrastructure of leaves and young roots in Lycium barbarum [J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(12): 2087-2095. | |
| 7 | 梁敏. 盐胁迫下宁夏枸杞差异蛋白的筛选及离子转运相关基因的表达 [D]. 银川: 宁夏大学, 2019. |
| Liang M. Screening of differential proteins and expression of ion transport related genes in Lycium barbarum L. in Ningxia under salt stress [D]. Yinchuan: Ningxia University, 2019. | |
| 8 | Lin S, Zeng SH, Biao A, et al. Integrative analysis of transcriptome and metabolome reveals salt stress orchestrating the accumulation of specialized metabolites in Lycium barbarum L. fruit [J]. Int J Mol Sci, 2021, 22(9): 4414. |
| 9 | 梁旺利, 于雯静, 胡进红, 等. NaCl胁迫下宁夏枸杞ABA代谢相关基因差异表达分析 [J]. 西北农业学报, 2024, 33(4): 664-672. |
| Liang WL, Yu WJ, Hu JH, et al. Differential expression of ABA metabolism-related genes in Lycium barbarum under NaCl stress [J]. Acta Agric Boreali Occidentalis Sin, 2024, 33(4): 664-672. | |
| 10 | 姚晓翠. LbVHA-d2和LbVHA-a3基因在宁夏枸杞响应盐胁迫中的功能分析 [D]. 银川: 宁夏大学, 2023. |
| Yao XC. Functional analysis of LbVHA-d2 and LbVHA-a3 genes in response to salt stress in Ningxia Lycium barbarum L. [D]. Yinchuan: Ningxia University, 2023. | |
| 11 | Yao XC, Meng LF, Zhao WL, et al. Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress [J]. Front Plant Sci, 2023, 14: 1090366. |
| 12 | 钱玥, 饶良懿. 盐碱胁迫对枸杞幼苗生长与叶绿素荧光特性的影响 [J]. 森林与环境学报, 2022, 42(3): 271-278. |
| Qian Y, Rao LY. Effects of saline-alkali stress on the growth and chlorophyll fluorescence characteristics of Lycium barbarum seedlings [J]. J For Environ, 2022, 42(3): 271-278. | |
| 13 | 宋繁, 胡进红, 梁旺利, 等. 盐胁迫下宁夏枸杞苯丙烷代谢相关基因差异表达分析 [J]. 西北植物学报, 2023, 43(8): 1286-1294. |
| Song F, Hu JH, Liang WL, et al. Differential expression analysis of genes related to phenylpropane metabolism in Lycium barbarum under salt stress [J]. Acta Bot Boreali Occidentalia Sin, 2023, 43(8): 1286-1294. | |
| 14 | Rehman N, Khan MR, Abbas Z, et al. Functional characterization of Mitogen-Activated Protein Kinase Kinase (MAPKK) gene in Halophytic Salicornia europaea against salt stress [J]. Environ Exp Bot, 2020, 171: 103934. |
| 15 | Zhou XR, Wang MM, Yang L, et al. Comparative physiological and transcriptomic analyses of oat (Avena sativa) seedlings under salt stress reveal salt tolerance mechanisms [J]. Plants (Basel), 2024, 13(16): 2238. |
| 16 | Cao YL, Li YL, Fan YF, et al. Wolfberry genomes and the evolution of Lycium (Solanaceae) [J]. Commun Biol, 2021, 4(1): 671. |
| 17 | Wang WD, Zhao SH, Pi X, et al. Structural features of the diatom photosystem II-light-harvesting antenna complex [J]. FEBS J, 2020, 287(11): 2191-2200. |
| 18 | 柏杨, 章文华. 二酰甘油从头合成途径的关键酶及其功能 [J]. 植物生理学报, 2018, 54(12): 1763-1773. |
| Bai Y, Zhang WH. Key enzymes for de novo synthesis of diacylglycerol in plant cells [J]. Plant Physiol J, 2018, 54(12): 1763-1773. | |
| 19 | Sui N, Tian SS, Wang WQ, et al. Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis [J]. Front Plant Sci, 2017, 8: 1337. |
| 20 | Cook R, Lupette J, Benning C. The role of chloroplast membrane lipid metabolism in plant environmental responses [J]. Cells, 2021, 10(3): 706. |
| 21 | Hou QC, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress [J]. Plant Cell Environ, 2016, 39(5): 1029-1048. |
| 22 | Sun MX, Liu XL, Gao HF, et al. Phosphatidylcholine enhances homeostasis in peach seedling cell membrane and increases its salt stress tolerance by phosphatidic acid [J]. Int J Mol Sci, 2022, 23(5): 2585. |
| 23 | Šamajová O, Plíhal O, Al-Yousif M, et al. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases [J]. Biotechnol Adv, 2013, 31(1): 118-128. |
| 24 | Jia MR, Luo N, Meng XB, et al. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice [J]. J Genet Genomics, 2022, 49(8): 766-775. |
| 25 | Liu J, Wang XM, Yang L, et al. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus [J]. Protoplasma, 2020, 257(3): 965-977. |
| 26 | Li XY, Zhao J, Sun YH, et al. Arabidopsis thaliana CRK41 negatively regulates salt tolerance via H2O2 and ABA cross-linked networks [J]. Environ Exp Bot, 2020, 179: 104210. |
| 27 | Vadovič P, Šamajová O, Takáč T, et al. Biochemical and genetic interactions of phospholipase D alpha 1 and mitogen-activated protein kinase 3 affect Arabidopsis stress response [J]. Front Plant Sci, 2019, 10: 275. |
| 28 | Shu P, Li YJ, Li ZY, et al. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes [J]. Environ Exp Bot, 2022, 193: 104698. |
| 29 | Wang JL, Sun ZM, Chen CH, et al. The MKK2a gene involved in the MAPK signaling cascades enhances Populus salt tolerance [J]. Int J Mol Sci, 2022, 23(17): 10185. |
| 30 | Negi NP, Prakash G, Narwal P, et al. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions [J]. Front Plant Sci, 2023, 14: 1248648. |
| 31 | Khan FS, Goher F, Paulsmeyer MN, et al. Calcium (Ca2+) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants [J]. Plant Biol, 2023, 25(7): 1025-1034. |
| 32 | Jiang ZH, Zhou XP, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx [J]. Nature, 2019, 572(7769): 341-346. |
| 33 | Kaya C, Uğurlar F, Adamakis ID S. Molecular mechanisms of CBL-CIPK signaling pathway in plant abiotic stress tolerance and hormone crosstalk [J]. Int J Mol Sci, 2024, 25(9): 5043. |
| 34 | Jamra G, Agarwal A, Singh N, et al. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana [J]. Plant Cell Rep, 2021, 40(11): 2205-2223. |
| 35 | Brindha C, Vasantha S, Raja AK, et al. Characterization of the salt overly sensitive pathway genes in sugarcane under salinity stress [J]. Physiol Plant, 2021, 171(4): 677-687. |
| 36 | Kumar G, Basu S, Singla-Pareek SL, et al. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice [J]. Physiol Plant, 2022, 174(1): e13638. |
| 37 | Steinhorst L, He GF, Moore LK, et al. A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis [J]. Dev Cell, 2022, 57(17): 2081-2094.e7. |
| 38 | Zhou Y, Zhu YF, Li W, et al. Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast [J]. Acta Physiol Plant, 2023, 45(4): 58. |
| 39 | Cho JH, Sim SC, Kim KN. Calcium sensor SlCBL4 associates with SlCIPK24 protein kinase and mediates salt tolerance in Solanum lycopersicum [J]. Plants (Basel), 2021, 10(10): 2173. |
| [1] | JIAO Jin-lan, WANG Wen-wen, JIE Xin-rui, WANG Hua-zhong, YUE Jie-yu. Mechanism of Exogenous Calcium Alleviating Salt Stress Toxicity in Wheat Seedlings [J]. Biotechnology Bulletin, 2024, 40(1): 207-221. |
| [2] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
| [3] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
| [4] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
| [5] | LI Wen-jiao, ZHANG Zhong-feng, LIU Qing, SUN Jie, YANG Li, WANG Xing-jun, ZHAO Shu-zhen. Role of BRs in Plant Response to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(1): 228-235. |
| [6] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
| [7] | WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence [J]. Biotechnology Bulletin, 2021, 37(3): 144-152. |
| [8] | HU Xiao-qian, ZHANG Ying-yi, LI Xin, YAN Hai-fang. Research Progress of Remorin Protein in Plants [J]. Biotechnology Bulletin, 2020, 36(8): 136-143. |
| [9] | YANG Rui-jia, ZHANG Zhong-bao, WU Zhong-yi. Progress of the Structural and Functional Analysis of Plant Transcription Factor TIFY Protein Family [J]. Biotechnology Bulletin, 2020, 36(12): 121-128. |
| [10] | YU Ming-xiang, SONG Shui-shan. Biological Functions of Protein Fatty Acylation in Plant Cells [J]. Biotechnology Bulletin, 2019, 35(8): 170-177. |
| [11] | LIU Chang-yu, CHEN Xun, LONG Yu-qing, CHEN Ya, LIU Xiang-dan, ZHOU Ri-bao. Research Advances in Genes Involved in Ethylene Biosynthesis and Signal Transduction During Flower Senescence [J]. Biotechnology Bulletin, 2019, 35(3): 171-182. |
| [12] | LIU Xiao-wei, YANG Xiu-yan, WU Hai-wen, ZHI Xiao-rong, ZHU Jian-feng, ZHANG Hua-xin. Effects of NaCl Stress on the Germination of Reaumuria soongorica and Evaluation of Salt Tolerance at Germination Stage [J]. Biotechnology Bulletin, 2019, 35(1): 27-34. |
| [13] | ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi. Research Progress on Plant AP2/ERF Transcription Factor Family [J]. Biotechnology Bulletin, 2018, 34(8): 1-7. |
| [14] | FENG Han-qian, LI Chao. Research Advances of Auxin Signal Transduction [J]. Biotechnology Bulletin, 2018, 34(7): 24-30. |
| [15] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||