Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (9): 302-313.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0271
LIAN Shao-jie1(
), TANG Sheng-shuo1, KANG Chuan-li1,2(
), LIU Lei1, ZHENG De-qiang1,2, DU Shuai1, TANG Li-wei1, ZHANG Mei-xia1, LIU Qiang1
Received:2025-03-13
Online:2025-09-26
Published:2025-09-24
Contact:
KANG Chuan-li
E-mail:17705371190@163.com;kangchuanli@focusfreda.com
LIAN Shao-jie, TANG Sheng-shuo, KANG Chuan-li, LIU Lei, ZHENG De-qiang, DU Shuai, TANG Li-wei, ZHANG Mei-xia, LIU Qiang. Isolation, Identification, Optimization of Fermentation Conditions of High-yield Tremella fuciformis Polysaccharides Enzyme-producing Strain and Its Enzyme Characteristics Analysis[J]. Biotechnology Bulletin, 2025, 41(9): 302-313.
水平 Level | 因素 Factor | ||
|---|---|---|---|
A 银耳多糖浓度 TFPs concentration (g/L) | B 酪蛋白胨浓度 Casein tryptone concentration (g/L) | C K2HPO4浓度 K2HPO4 concentration (g/L) | |
| -1 | 7.5 | 22.5 | 6.0 |
| 0 | 8.0 | 25.0 | 7.0 |
| 1 | 8.5 | 27.5 | 8.0 |
Table 1 Response surface design for the optimization of fermentation medium
水平 Level | 因素 Factor | ||
|---|---|---|---|
A 银耳多糖浓度 TFPs concentration (g/L) | B 酪蛋白胨浓度 Casein tryptone concentration (g/L) | C K2HPO4浓度 K2HPO4 concentration (g/L) | |
| -1 | 7.5 | 22.5 | 6.0 |
| 0 | 8.0 | 25.0 | 7.0 |
| 1 | 8.5 | 27.5 | 8.0 |
Fig. 1 Screening of strains producing high-yield TFPs enzymeA: Experimental results of TFPs degradation. B: Standard curve of glucuronic acid. C: Enzyme activity assay results
Fig. 2 Morphological and molecular biology identification of strain Y3522A: Morphology of colony; B: morphology of cell; C: phylogenetic analysis based on the 16S rRNA gene
序号 Test No. | A 银耳多糖 TFPs | B酪蛋白胨 Casein peptone | C K2HPO4 | Y 银耳多糖酶活 Enzyme activity of TFPs(U/mL) |
|---|---|---|---|---|
| 1 | 7.5 | 22.5 | 7.0 | 332.47 |
| 2 | 8.5 | 22.5 | 7.0 | 333.33 |
| 3 | 7.5 | 27.5 | 7.0 | 333.36 |
| 4 | 8.5 | 27.5 | 7.0 | 348.39 |
| 5 | 7.5 | 25.0 | 6.0 | 334.14 |
| 6 | 8.5 | 25.0 | 6.0 | 333.28 |
| 7 | 7.5 | 25.0 | 8.0 | 327.40 |
| 8 | 8.5 | 25.0 | 8.0 | 349.77 |
| 9 | 8.0 | 22.5 | 6.0 | 340.28 |
| 10 | 8.0 | 27.5 | 6.0 | 348.17 |
| 11 | 8.0 | 22.5 | 8.0 | 343.75 |
| 12 | 8.0 | 27.5 | 8.0 | 349.75 |
| 13 | 8.0 | 25.0 | 7.0 | 362.98 |
| 14 | 8.0 | 25.0 | 7.0 | 372.05 |
| 15 | 8.0 | 25.0 | 7.0 | 370.73 |
| 16 | 8.0 | 25.0 | 7.0 | 373.57 |
| 17 | 8.0 | 25.0 | 7.0 | 364.28 |
Table 2 Response surface design and test results
序号 Test No. | A 银耳多糖 TFPs | B酪蛋白胨 Casein peptone | C K2HPO4 | Y 银耳多糖酶活 Enzyme activity of TFPs(U/mL) |
|---|---|---|---|---|
| 1 | 7.5 | 22.5 | 7.0 | 332.47 |
| 2 | 8.5 | 22.5 | 7.0 | 333.33 |
| 3 | 7.5 | 27.5 | 7.0 | 333.36 |
| 4 | 8.5 | 27.5 | 7.0 | 348.39 |
| 5 | 7.5 | 25.0 | 6.0 | 334.14 |
| 6 | 8.5 | 25.0 | 6.0 | 333.28 |
| 7 | 7.5 | 25.0 | 8.0 | 327.40 |
| 8 | 8.5 | 25.0 | 8.0 | 349.77 |
| 9 | 8.0 | 22.5 | 6.0 | 340.28 |
| 10 | 8.0 | 27.5 | 6.0 | 348.17 |
| 11 | 8.0 | 22.5 | 8.0 | 343.75 |
| 12 | 8.0 | 27.5 | 8.0 | 349.75 |
| 13 | 8.0 | 25.0 | 7.0 | 362.98 |
| 14 | 8.0 | 25.0 | 7.0 | 372.05 |
| 15 | 8.0 | 25.0 | 7.0 | 370.73 |
| 16 | 8.0 | 25.0 | 7.0 | 373.57 |
| 17 | 8.0 | 25.0 | 7.0 | 364.28 |
来源 Source | 平方和 Sum of square | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 3 727.49 | 9 | 414.17 | 29.42 | < 0.001 | *** |
| A | 174.85 | 1 | 174.85 | 12.42 | 0.010 | ** |
| B | 111.30 | 1 | 111.30 | 7.91 | 0.026 | * |
| C | 27.38 | 1 | 27.38 | 1.94 | 0.206 | |
| AB | 50.20 | 1 | 50.20 | 3.57 | 0.101 | |
| AC | 134.91 | 1 | 134.91 | 9.58 | 0.017 | * |
| BC | 0.893 0 | 1 | 0.893 0 | 0.063 4 | 0.808 | |
| A2 | 1 784.57 | 1 | 1 784.57 | 126.75 | < 0.001 | *** |
| B2 | 532.63 | 1 | 532.63 | 37.83 | < 0.001 | *** |
| C2 | 605.03 | 1 | 605.03 | 42.97 | < 0.001 | *** |
| 残差 Residual | 98.55 | 7 | 14.08 | |||
| 失拟向 Lack of fit | 7.24 | 3 | 2.41 | 0.105 7 | 0.952 | Not significant |
| 纯误差 Pure error | 91.31 | 4 | 22.83 | |||
| 总差 Total error | 3 826.0 | 16 |
Table 3 Results of variance analysis by regression model
来源 Source | 平方和 Sum of square | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 3 727.49 | 9 | 414.17 | 29.42 | < 0.001 | *** |
| A | 174.85 | 1 | 174.85 | 12.42 | 0.010 | ** |
| B | 111.30 | 1 | 111.30 | 7.91 | 0.026 | * |
| C | 27.38 | 1 | 27.38 | 1.94 | 0.206 | |
| AB | 50.20 | 1 | 50.20 | 3.57 | 0.101 | |
| AC | 134.91 | 1 | 134.91 | 9.58 | 0.017 | * |
| BC | 0.893 0 | 1 | 0.893 0 | 0.063 4 | 0.808 | |
| A2 | 1 784.57 | 1 | 1 784.57 | 126.75 | < 0.001 | *** |
| B2 | 532.63 | 1 | 532.63 | 37.83 | < 0.001 | *** |
| C2 | 605.03 | 1 | 605.03 | 42.97 | < 0.001 | *** |
| 残差 Residual | 98.55 | 7 | 14.08 | |||
| 失拟向 Lack of fit | 7.24 | 3 | 2.41 | 0.105 7 | 0.952 | Not significant |
| 纯误差 Pure error | 91.31 | 4 | 22.83 | |||
| 总差 Total error | 3 826.0 | 16 |
Fig. 7 Variations in the molecular weights of the main components of enzymatic hydrolysate under different conditions and GPC spectra of TFPs before and after enzymatic hydrolysis
| [1] | 叶俊博, 杨德红, 王坤, 等. 菌中之冠——银耳 [J]. 大学化学, 2023, 38(7): 206-211. |
| Ye JB, Yang DH, Wang K, et al. Crown of edible fungi: Tremella [J]. Univ Chem, 2023, 38(7): 206-211. | |
| [2] | Lin BB, Huang GL. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship, and application of polysaccharides from White jellyfungus [J]. Biotechnol Bioeng, 2022, 119(6): 1359-1379. |
| [3] | Fu H, You SQ, Zhao D, et al. Tremella fuciformis polysaccharides inhibit UVA-induced photodamage of human dermal fibroblast cells by activating up-regulating Nrf2/Keap1 pathways [J]. J Cosmet Dermatol, 2021, 20(12): 4052-4059. |
| [4] | Khan TJ, Xu XF, Xie XL, et al. Tremella fuciformis crude polysaccharides attenuates steatosis and suppresses inflammation in diet-induced NAFLD mice [J]. Curr Issues Mol Biol, 2022, 44(3): 1224-1234. |
| [5] | Qin LL, Su GQ, Wu C, et al. Effects of Tremella fuciformis extract on growth performance, biochemical and immunological parameters of weaned piglets challenged with lipopolysaccharide [J]. Animal Production Science, 2022, 62(5): 462-469. |
| [6] | Ma X, Yang M, He Y, et al. A review on the production, structure, bioactivities and applications of Tremella polysaccharides [J]. Int J Immunopathol Pharmacol, 2021, 35: 20587384211000541. |
| [7] | 许臻军. 小分子量银耳多糖的制备及其益生作用研究 [D]. 福州: 福建农林大学, 2024. |
| Xu ZJ. Study on preparation and probiotics of small molecular weight Tremella polysaccharide [D]. Fuzhou: Fujian Agriculture and Forestry University, 2024. | |
| [8] | Chen B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro [J]. Carbohydr Polym, 2010, 81(2): 420-424. |
| [9] | 吴琼, 代永刚, 高长城, 等. 酸降解水溶性银耳多糖及抗氧化作用研究 [J]. 食品科学, 2009, 30(13): 93-96. |
| Wu Q, Dai YG, Gao CC, et al. Antioxidations of acid-degrade water-soluble polysaccharides from Tremella fuciformis [J]. Food Sci, 2009, 30(13): 93-96. | |
| [10] | 何荣军, 刘高丹, 孙培龙. 一种银耳低聚糖的制备方法及其应用: 中国, CN110590968B [P]. 2021-09-28. |
| He RJ, Liu GD, Sun PL. A preparation method and application of Tremella fuciformis oligosaccharides: China, CN110590968B [P]. 2021-09-28. | |
| [11] | 吕国军, 陈立, 耿少特. 一种低分子量银耳多糖的制备方法: 中国, CN114671959A [P]. 2022-06-28. |
| Lyu GJ, Chen L, Geng ST. A preparation method of low molecular weight Tremella fuciformis polysaccharides: China, CN114671959A [P]. 2022-06-28. | |
| [12] | 石清东, 王姣. 一种制备低分子量多糖的方法: 中国, CN106191914A [P]. 2018-10-02. |
| Shi QD, Wang J. A method for preparing low molecular weight polysaccharides: China, CN106191914A [P]. 2018-10-02. | |
| [13] | 张天萌, 郭文逸, 孙劭靖, 等. 一种低分子量银耳多糖的生产方法: CN107459585B [P]. 2019-11-19. |
| Zhang TM, Guo WY, Sun SJ, et al. Production method of low-molecular weight tremella polysaccharide: China, CN107459585B [P]. 2019-11-19. | |
| [14] | 陈杰烽, 何衍建, 谢明容, 等. 一种低分子量银耳多糖及其制备方法与应用: CN106117387B [P]. 2019-03-12. |
| Chen JF, He YJ, Xie MR, et al. A low-molecular-weight Tremella fuciformis polysaccharide and its preparation method and application: China, CN106117387B [P]. 2019-03-12. | |
| [15] | 雷曦, 张蕊, 黄遵锡, 等. 透明质酸酶的研究进展 [J]. 微生物学通报, 2021, 48(3): 882-895. |
| Lei X, Zhang R, Huang ZX, et al. Research progress of hyaluronidases [J]. Microbiol China, 2021, 48(3): 882-895. | |
| [16] | 雷曦, 周峻沛, 黄遵锡, 等. 糖胺聚糖降解菌株的筛选及鉴定 [J]. 微生物学杂志, 2020, 40(3): 22-27. |
| Lei X, Zhou JP, Huang ZX, et al. Screening and identification of glycosaminoglycan degradation strains [J]. J Microbiol, 2020, 40(3): 22-27. | |
| [17] | Ingham E, Holland KT, Gowland G, et al. Purification and partial characterization of hyaluronate lyase (EC 4.2.2.1) from Propionibacterium acnes [J]. J Gen Microbiol, 1979, 115(2): 411-418. |
| [18] | Sting R, Schaufuss P, Blobel H. Isolation and Characterization of Hyaluronidases from Streptococcus dysgalactiae, S. zooepidemicus and S. equi [J]. Zentralbl Für Bakteriologie, 1990, 272(3): 276-282. |
| [19] | Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview [J]. Life Sci, 2007, 80(21): 1921-1943. |
| [20] | Sun XQ, Wang Z, Bi YL, et al. Genetic and functional characterization of the hyaluronate lyase HylB and the beta-N-acetylglucosaminidase HylZ in Streptococcus zooepidemicus [J]. Curr Microbiol, 2015, 70(1): 35-42. |
| [21] | 王聪聪, 周剑丽, 顾秋亚, 等. 产岩藻多糖酶菌株的筛选及其酶解制备低分子质量岩藻多糖的研究 [J]. 食品与发酵工业, 2022, 48(23):49-56. |
| Wang CC, Zhou JL, Gu QY, et al. Screening of fucoidanase-producing strains and preparation of low molecular weight fucoidan by enzymatic hydrolysis [J]. Food and Fermentation Industries, 2022, 48(23): 49-56. | |
| [22] | 汪乐盛, 李科, 方莎莎, 等. 丁酸梭菌高密度发酵及产孢条件优化 [J]. 食品与发酵工业, 2024, 50(24): 107-113. |
| Wang LS, Li K, Fang SS, et al. Optimization of high cell density fermentation conditions and sporulation of Clostridium butyricum [J]. Food and Fermentation Industries, 2024, 50(24): 107-113. | |
| [23] | 孔蒙蒙, 金静静, 卢鹏, 等. 高产纤维素酶工程菌株产酶条件优化 [J]. 生物技术进展, 2024, 14(6): 1032-1041. |
| Kong MM, Jin J, Lu P, et al. Optimization of enzyme production conditions of high-yielding cellulase engineering strains [J]. Current Biotechnology, 2024, 14(6): 1032-1041. | |
| [24] | 李鑫, 李志刚, 史仲平. 原料碳氮比对丁醇发酵两阶段发酵性能的影响 [J]. 食品与生物技术学报, 2014, 33(11): 1168-1175. |
| Li X, Li ZG, Shi ZP. Effect of carbon/nitrogen ratio on butanol fermentation performances in two periods [J]. J Food Sci Biotechnol, 2014, 33(11): 1168-1175. | |
| [25] | 刘思琪, 郭玉娟, 刘彤, 等. β-半乳糖苷酶的筛选及低聚半乳糖制备工艺优化研究 [J]. 中国乳品工业, 2025, 53(2): 51-58. |
| Liu SQ, Guo YJ, Liu T, et al. Screening of β-galactosidase and optimization of galactooligosaccharides preparation process [J]. China Dairy Industry, 2025, 53(2): 51-58. | |
| [26] | Hartwig A. Role of magnesium in genomic stability [J]. Mutat Res Mol Mech Mutagen, 2001, 475(1/2): 113-121. |
| [27] | 陈菲. 一株蛋白酶产生菌的鉴定、酶性质研究和表达载体构建 [D]. 郑州: 河南工业大学, 2018. |
| Chen F. Identification, characterization and expression vector construction of a protease-producing strain [D]. Zhengzhou: Henan University of Technology, 2018. | |
| [28] | Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview [J]. Biotechnol Adv, 2009, 27(2): 153-176. |
| [29] | 刘爽, 江洲, 赵帅, 等. 一株产蛋白酶细菌的筛选、鉴定及发酵工艺优化 [J]. 生物技术通报, 2025, 41(4): 335-344. |
| Liu S, Jiang Z, Zhao S, et al. Screening, identification, and fermentation optimization of a protease producing bacterial strain [J]. Biotechnol Bull, 2025, 41(4): 335-344. | |
| [30] | 韦燕琪, 宁思敏, 韦昌浩, 等. 高产纤维素酶产生菌的筛选、鉴定及发酵条件优化 [J]. 中国饲料, 2024(17): 46-54. |
| Wei YQ, Ning SM, Wei CH, et al. Screening and identification of cellulase-producing strain and optimization of the fermentation conditions [J]. China Feed, 2024(17): 46-54. | |
| [31] | 温冬灼. 产纤维素酶菌种筛选及产酶工艺与酶学性质研究 [D]. 哈尔滨: 东北林业大学, 2022. |
| Wen DZ. Screening of cellulase-producing strains and research on enzyme production and enzymatic properties [D]. Harbin: Northeast Forestry University, 2022. |
| [1] | SU Xiu-min, HAN Wen-qing, WANG Jiao, LI Peng, WANG Qiu-lan, LI Wan-xing, CAO Jin-jun. Isolation, Identification, Biological Characteristics and Biocontrol Effects of Trichoderma harzianum M408 against Tomato Early Blight [J]. Biotechnology Bulletin, 2025, 41(9): 277-288. |
| [2] | ZHANG Ru, LI Yi-ming, ZHANG Tong-xi, SUN Zhan-bin, REN Qing, PAN Han-xu. Isolation and Identification of a High-yielding Magnolol and Honokiol Strain from Magnolia officinalis and Optimization of the “Sweating” Process [J]. Biotechnology Bulletin, 2025, 41(8): 322-334. |
| [3] | XIANG Bo-ka, ZHOU Zuan-zuan, FENG Jia-hui, XIA Chen, LI Qi, CHEN Chun. Isolation and Identification of a Fungus from Moldy Tobacco Leaf and Study on Its Mold-causing Factors [J]. Biotechnology Bulletin, 2025, 41(2): 321-330. |
| [4] | PEI Xu-juan, DI Jing-yi, LIU Hao, GAO Wei-xia. Exploration of Regulatory Elements for Hyaluronic Acid Molecular Weight in Streptococcus zooepidemicus via Transcriptome Analysis [J]. Biotechnology Bulletin, 2025, 41(1): 347-356. |
| [5] | ZHANG Ya-ya, LI Pan-pan, GAO Hui-hui, JIA Chen-bo, XU Chun-yan. Exploring on the Pathogenesis of Root Rot of Lycium barbarum cv. ‘Ningqi-5' Based on the Rhizoplane Fungal Community and Pathogens Identification [J]. Biotechnology Bulletin, 2024, 40(9): 238-248. |
| [6] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
| [7] | WANG Lu, LIU Meng-yu, ZHANG Fu-yuan, JI Shou-kun, WANG Yun, ZHANG Ying-jie, DUAN Chun-hui, LIU Yue-qin, YAN Hui. Isolation and Identification of Rumen Skatole-degrading Bacteria and Analysis on Their Degradation Characteristics [J]. Biotechnology Bulletin, 2024, 40(3): 305-311. |
| [8] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
| [9] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
| [10] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
| [11] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
| [12] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
| [13] | DONG Yi-hua, WANG Ling-xiao, REN Han-xue, CHEN Feng. Isolation and Identification of a Psychrotolerant Heterotrophic Nitrification-aerobic Denitrification Bacterium and Its Nitrogen-removing Characteristics [J]. Biotechnology Bulletin, 2023, 39(12): 237-249. |
| [14] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
| [15] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||