Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (1): 8-14.
• Papers • Previous Articles Next Articles
Chen Xiaolin, Yan Qun, Gao Lijun, Gao Hanliang
Received:
2013-09-10
Online:
2014-01-23
Published:
2014-01-23
Chen Xiaolin, Yan Qun, Gao Lijun, Gao Hanliang. Advances of Molecular Biology Researches on Rice Bacterial Blight Disease Resistance Gene Xa21[J]. Biotechnology Bulletin, 2014, 0(1): 8-14.
[1] Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012, 490(7421): 497-501. [2] Mew TW. Current status and future prospects of research on bacterial blight of rice[J]. Annu Rev Phytopathol, 1987, 25(1): 359-382. [3] 章琦. 水稻白叶枯病抗性的遗传与改良[M]. 北京: 科学出版社,2007: 2. [4] Ronald PC. The molecular basis of disease resistance in rice[J].Plant Mol Biol, 1997, 35(1-2): 179-186. [5] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1,a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. PNAS, 1998, 95: 1663-1668. [6] Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Mol Plant Microbe Interact, 2004, 17: 1348-1354. [7] Chu Z, Ouyang Y, Zhang J, et al. Genome-wide analysis of defenseresponsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13[J]. Mol Genet Genomics, 2004, 271: 111-120. [8] Song WY, Wang GL, Chen L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21[J]. Science,1995, 270: 1804-1806. [9] 王春连. 水稻抗白叶枯病基因Xa23 的图位克隆[D]. 北京: 中国农业科学院研究生院, 2006. [10] Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant J, 2004, 37: 517-527. [11] Gu K, Tian D, Yang F, et al. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L[J]. Theor Appl Genet, 2004, 108(5): 800-807. [12] Khush GS, Bacalangco E, Ogawa T. A new gene for resistance to bacterial blight from O. longistaminate[J]. Rice Genet News Lett, 1990, 7: 121-122. [13] Ronald PC, Albano B, Tabien R, et al. Genetic and physical analysis of the rice bacterial blight disease resistance locus,Xa21[J]. Mol Gen Genet, 1992, 236(1): 113-120. [14] Wang GL, Holsten TE, Song WY, et al. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa27 disease resistance locus[J]. Plant J, 1995, 7: 525-533. [15] Song WY, Pi LY, Wang GL, et al. Evolution of the rice Xa21 disease resistance gene family[J]. Plant Cell, 1997, 9: 12791287. [16] Goel RK, Gupta AK. Host age in relation to resistance in rice to bacterial blight caused by Xanthomonas campestris pv. oryzae[J].Trop Agric, 1990, 67: 368-370. [17] Kim KD, Hwang BK, Koh YJ. Evaluation of rice cultivars under greenhouse conditions for adult-plant resistance to Pyricularia oryzae[J]. J Phytopath, 1987, 120: 310-316. [18] Ogawa T. Methods and strategy for monitoring race distribution and identification of resistance to bacterial leaf blight(Xanthomonas campestris pv. oryzae)in rice[J]. Japan Agric Res Quart, 1993,27: 71-80. [19] Yeh WH, Bonman JM, Lee EJ. Effects of temperature, leaf wetness duration, and leaf age on partial resistance to rice blast[J]. J Plant Prot Trop, 1989, 6: 223-230. [20] Century KS, Lagman RA, Adkisson M, et al. Short communication: developmental control of Xa21-mediated disease resistance in rice[J]. Plant J, 1999, 20(2): 231-236. [21] Zhao J, Fu J, Li X, et al. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice[J]. TAG Theoretical and Applied Genetics, 2009, 119: 231-239. [22] Park CJ, Lee SW, Chern M, et al. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. Oryzae[J]. Plant Sci, 2010, 179(5): 466-471. [23] 万丙良, 张献龙. Xa21 基因的分子生物学研究进展[J]. 中 国水稻科学, 1998, 12(2): 115-118. [24] 白辉, 李莉云, 刘国振. 水稻抗白叶枯病基因Xa21 的研究进 展[J]. 遗传, 2006, 28(6): 745-753. [25] Liu GZ, Pi LY, Walker JC, et al. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21[J]. J Biol Chem, 2002, 277(23): 20264-20269. [26] Xu WH, Wang YS, Liu GZ, et al. The autophosphorylated Ser686,Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptorlike kinase[J]. Plant J, 2006, 45(5): 740-751. [27] Flor HH. Inheritance of pathogenicity in Melampsora lini[J].Phytopathology, 1942, 32: 653-669. [28] Flor HH. Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology, 1971, 9(1): 275-296. [29] 王育鹏, 刘登义, 李征, 等. 自然植物种群中病原菌与寄主植 物相互作用的遗传学[J]. 生态学杂志, 2005, 24(2): 190- 194. [30] Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response[J]. Curr Opin Immunol, 1997, 9(1): 4-9. [31] Medzhitov R. Toll-like receptors and innate immunity[J]. Nat Rev Immunol, 2001, 1(2): 135-145. [32] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annu Rev Plant Biol, 2009,60: 379-406. [33] Shen Y, Sharma P, da Silva FG, et al. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5'-phosphosulphate kinase that are required for AvrXa21 avirulence activity[J]. Mol Microbiol, 2002, 44(1): 37-48. [34] da Silva FG, Shen YW, Dardick C, et al. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response[J]. Mol Plant Microbe Interact, 2004, 17(6): 593-601. [35] Burdman S, Shen Y, Lee SW, et al. RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity[J]. Mol Plant Microbe Interact, 2004, 17(6): 602-612. [36] Lee SW, Han SW, Bartley LE, et al. From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity[J]. PNAS, 2006, 103: 18395-18400. [37] Lee SW, Han SW, Sririyanum M, et al. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity[J]. Science,2009, 326(5954): 850-853. [38] Dardick C, Ronald P. Plant and animal pathogen recognition receptors signal through non-RD kinases[J]. PLoS Patho, 2006, 2: e2. [39] Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant J, 2006, 46: 794-804. [40] Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant J, 2004, 37: 517-527. [41] Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced c o m ple x of t h e rec e pto r FL S2 a nd BA K 1 i n it i a tes pla nt defence[J]. Nature, 2007, 448: 497-500. [42] Wan J, Zhang XC, Neece D, et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J]. The Plant Cell, 2008, 20: 471-481. [43] Wang GL, Ruan DL, Song WY, et al. Xa21D encodes a receptorlike molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution[J].The Plant Cell, 1998, 10: 765-779. [44] Chen X, Chern M, Canlas PE, et al. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21mediated immunity[J]. J Biol Chem, 2010, 285(14): 10454- 10463. [45] Wang Y, Pi L, Chen X, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. The Plant Cell, 2006, 18: 3635-3646. [46] Peng Y, Bartley LE, Chen X, et al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice[J]. Molecular Plant, 2008, 1(3): 446-458. [47] Park C, Peng Y, Chen X, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(9): e231. [48] Chen X, Chern M, Canlas PE, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. PNAS, 2010, 107(17): 8029-8034. [49] Park CJ, Bart R, Chern M, et al. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice[J]. PLoS One, 2010, 5(2): e9262. [50] Peng Y, Bartley LE, Canlas P, et al. OsWRKY IIa transcription factors modulate rice innate immunity[J]. Rice, 2010, 3: 36-42. [51] Park CJ, Han SW, Chen X, et al. Elucidation of XA21-mediated innate immunity[J]. Cellular Microbiology, 2010, 12: 10171025. [52] Park CJ, Ronald PC. Cleavage and nuclear localization of the rice XA21 immune receptor[J]. Nat Commun, 2012, 3: 920. [53] 曾列先, 黄少华, 伍尚忠. IRBB21(Xa21) 对广东稻白叶枯 病菌5 个小种的抗性反应[J]. 植物保护学报, 2002, 2(29): 97-100. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[6] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[7] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[8] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[9] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[10] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[11] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[12] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[13] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[14] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[15] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||