[1] Casero RA, Marton LJ. Targeting polyamine metabolism and function in cancer and other proliferative diseases[J]. Nature Rev/Drug Dis, 2007, 6: 373-390. [2] Battaglia V, Shields CD, Murray-Steward T, et al. Polyamine catabolism in carcigenesis: potential targets for chemotherapy and chemoprevention[J]. Amino Acids, 2013, DOI 10. 1007/s00726- 013-1529-6[Epub ahead of print]. [3] Giskeodegard GF, Bertilsson H, Selnaes KM, et al. Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness[J]. Plos One, 2013, 8(4): e62375. [4] Casero RA, Woster PM. Recent advances in the development of polyamine analogues as antitumor agents[J]. J Med Chem, 2009,52: 4551-4573. [5] Soda K. The mechanisms by which polyamines accelerate tumor spread[J]. J Exp Clin Cancer Res, 2011, 30(11): 95-103. [6] Nowotarski SL, Woster PM, Casero RA. Polyamines and cancer: implications for chemotherapy and chemoprevention[J]. Expert Rev Mol Med, 2013, 15: 373-394. [7] Wu CL, Liao YF, Liu GY, et al. Ornithine decarboxylase prevents dibenzoylmethane-induced apoptosis through repressing reactive oxygen species generation[J]. J Biochem Mol Toxicol, 2011, 25 (5): 312-319. [8] Keledjian KM, Marasa BS, Wang JY, et al. Induced PDK1 kinase activity suppresses apoptosis in intestinal epithelial cells by activating Akt signaling following polyamine depletion[J]. Int J Clin Exp Med, 2012, 5(3): 221-228. [9] Koomoa DL, Yco LP, Borsics T, et al. Ornithine decarboxylase inhibition by alpha-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1 in neuroblastoma[J]. Cancer Res, 2008, 68(23): 9825-9831. [10] Zhang HM, Rao JN, Wang JY, et al. Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting Caspase-3 after polyamine depletion[J]. J Bio Chem, 2004, 279(21): 22539- 22547. [11] Kucharzewska P, Welch JE, Svensson KJ, et al. The polyamines regulate endothelial cell survival during hypoxic stress through PI3K/AKT and MCL-1[J]. Biochem Biophys Res Commun,2009, 380(2): 413-418. [12] Cetrullo S, Tantini B, Flamigni F, et al. A pro-survival effect of polyamine depletion on norepinephrine mediated apoptosis in cardiac cells: role of signaling enzymes[J]. Amino Acids, 2011,40: 1127-1137. [13] Rajeeve V, Pearce W, Cutillas PR, et al. Polyamine production is downstream and upstream of oncogenic PI3K signalling and contributes to tumour cell growth[J]. Biochem J, 2013, 450: 619-628. [14] Seshacharyulu P, Ponnusamy MP, Haridas D, et al. Targeting the EGFR signaling pathway in cancer therapy[J]. Expert Opin Thera Targets, 2012, 16(1): 15-31. [15] Ray RM, Li C, Bhattacharya S, et al. Spermine, a molecular switch regulating EGFR, integrin β3, Src, and FAK scaffolding[J]. Cell Signal, 2012, 24(4): 931-942. [16] Ray RM, Bhattacharya S, Johnson LR. EGFR plays a pivotal role in the regulation of polyamine dependent apoptosis in intestinal epithelial cells[J]. Cell Signal, 2007, 19(12): 2519-2527. [17] Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities[J]. Nature Rev/ Cancer, 2010, 10: 9-22. [18] deHart GW, Jin T, McCloskey DE, et al. The alpha9beta1 integrin enhances cell migration by polyamine-mediated modulation of an inward-rectifier potassium channel[J]. Proc Natl Acad Sci USA,2008, 105(20): 7188-7193. [19] Bhattacharya S, Ray RM, Johnson LR. Role of polyamines in p53dependent apoptosis of intestinal epithelial cells[J]. Cell Signal,2009, 21(4): 509-522. [20] Xiao L, Rao JN, Zou T, et al. Induced ATF-2 represses CDK4 transcription through dimerization with JunD inhibiting intestinal epithelial cell growth after polyamine depletion[J]. Am J Physiol Cell Physiol, 2010, 298(5): 1226-1234. |