[1] Braatsch S, Helmark S, Kranz H, et al. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning[J] . Biotechniques, 2008, 45(3):335-337.
[2] Siegl T, Tokovenko B, Myronovskyi M, et al. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes[J] . Metabolic Engineering, 2013, 19:98-106.
[3] Rytter JV, Helmark S, Chen J, et al. Synthetic promoter libraries for Corynebacterium glutamicum[J] . Applied Microbiology and Biotechnology, 2014, Published online.
[4] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering[J] . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12678-12683.
[5] Cox RS 3rd, Surette MG, Elowitz MB. Programming gene expression with combinatorial promoters[J] . Molecular Systems Biology, 2007, 3:145-156.
[6] Murphy KF, Balazsi G, Collins JJ. Combinatorial promoter design for engineering noisy gene expression[J] . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(31):12726-12731.
[7] Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions[J] . Nature Biotechnology, 2009, 27(5):465-471.
[8] Nevoigt E, Fischer C, Mucha O, et al.Engineering promoter regulation[J] . Biotechnology and Bioengineering, 2007, 96(3):550-558.
[9] Drummond DA, Iverson BL, Georgiou G, et al. Why high-error-rate random mutagenesis libraries are enriched in functional and impro-ved proteins[J] . Journal of Molecular Biology, 2005, 350(4):806-816.
[10] Kunichika K, Hashimoto Y, Imoto T. Robustness of hen lysozyme monitored by random mutations[J] . Protein Engineering, 2002, 15(10):805-809.
[11] Qin X, Qian J, Xiao C, et al. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris[J] . Letters in Applied Microbiology, 2011, 52(6):634-641.
[12] Klein-Marcuschamer D, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains[J] . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(7):2319-2324.
[13] Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis[J] . PCR Methods & Applications, 1992, 2(1):28-33.
[14] Leung DW, Chen E, Goeddel DV. A method for random mutagene-sis of a defined DNA segment using a modified polymerase chain reaction[J] . Technique, 1989, 1:11-15.
[15] Chusacultanachai S, Yuthavong Y. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments[J] . Methods in Molecular Biology, 2004, 270:319-334.
[16] Wilson DS, Keefe AD. Random mutagenesis by PCR. Current Protocols in Molecular Biology, 2001, 51:8.3:8.3.1-8.3.9.
[17] Balci H, Ozturk MT, Pijning T, et al. Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR[J] . Applied Microbiology and Biotechnology, 2014, 98 (10):4467-4477.
[18] Akbari M, Hansen MD, Halgunset J, et al. Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner[J] . The Journal of Molecular Diagnostics, 2005, 7(1):36-39.
[19] Trollope KM, Nieuwoudt HH, G?rgens JF, et al. Screening a random mutagenesis library of a fungal beta-fructofuranosidase using FT-MIR ATR spectroscopy and multivariate analysis[J] . Applied Microbiology and Biotechnology, 2014, 98(9):4063-4073.
[20] McCullum EO, Williams BA, Zhang J, et al. Random mutagenesis by error-prone PCR[J] . Methods Mol Biol, 2010, 634:103-109.
[21] Shafikhani S, Siegel RA, Ferrari E, et al. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization[J] . Biotechniques, 1997, 23(2):304-310. |