[1]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674. [2]Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunotherapy[J]. Science, 2013, 342(6165):1432-1433. [3]Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy[J]. Immunol Rev, 2009, 229(1):337-355. [4]Meseck M, Huang T, Ma G, et al. A functional recombinant human 4-1BB ligand for immune costimulatory therapy of cancer[J]. J Immunother, 2011, 34(2):175-182. [5]Wang S, Lv J, Wang P, et al. Recombinant human CD137L for cancer immunotherapy:effects of different fusions and linkers on its activity[J]. Cancer Immunol Immunother, 2012, 61(4):489-495. [6]Alderson MR, Smith CA, Tough TW, et al. Molecular and biological characterization of human 4-1BB and its ligand[J]. Eur J Immunol, 1994, 24(9):2219-2227. [7]Palma C, Binaschi M, Bigioni M, et al. CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival[J]. Int J Cancer, 2004, 108(3):390-398. [8]Palazon A, Teijeira A, Martinez-Forero I, et al. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes[J]. Cancer Res, 2011, 71(3):801-811. [9]Wilcox RA, Flies DB, Zhu G, et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors[J]. J Clin Invest, 2002, 109(5):651-659. [10]DeBenedette MA, Wen T, Bachmann MF, et al. Analysis of 4-1BB ligand(4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus[J]. J Immunol, 1999, 163(9):4833-4841. [11]Ascierto PA, Simeone E, Sznol M, et al. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies[J]. Semin Oncol, 2010, 37(5):508-516. [12]Cannons JL, Lau P, Ghumman B, et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy[J]. J Immunol, 2001, 167(3):1313-1324. [13]张晓舟. 枯草杆菌新型表达系统和遗传操作体系的建立及应用[D]. 南京:南京农业大学, 2006. [14]Berlec A, Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells[J]. J Ind Microbiol Biotechnol, 2013, 40(3-4):257-274. [15]Nijland R, Kuipers OP. Optimization of protein secretion by Bacillus subtilis[J]. Recent Pat Biotechnol, 2008, 2(2):79-87. [16]Assenberg R, Wan PT, GeisseS, et al. Advances in recombinant protein expression for use in pharmaceutical research[J]. Curr Opin Struct Biol, 2013, 23(3):393-402. [17]Goncalves AM, Pedro AQ, Maia C, et al. Pichia pastoris:a recombinant microfactory for antibodies and human membrane proteins[J]. J Microbiol Biotechnol, 2013, 23(5):587-601. [18]王帅坤, 郝杰清, 王振伟, 等. 毕赤酵母表达重组葡萄糖氧化酶的发酵条件[J]. 生物技术通报, 2013(9):136-141. [19]秦秀林, 钱江潮, 储柜. 利用间隔肽促进S-腺苷甲硫氨酸合成酶在毕赤酵母中的分泌表达[J]. 生物技术通报, 2013(6):140-146. [20]Rabert C, Weinacker D, Pessoa A Jr, et al. Recombinants proteins for industrial uses:utilization of Pichia pastoris expression system[J]. Braz J Microbiol, 2013, 44(2):351-356. [21]Porowinska D, Wujak M, Roszek K, et al. Prokaryotic expression systems[J].Postepy Hig Med Dosw, 2013, 67:119-129. [22]彭清忠, 张惟材, 朱厚础. 枯草杆菌表达系统的研究进展[J]. 生物技术通讯, 2001, 12(3):220-226. [23]Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli[J]. Protein J, 2013, 32(6):419-425. [24]Porowinska D, Marszalek E, Wardecka P, et al. In vitro renaturation of proteins from inclusion bodies[J]. Postepy Hig Med Dosw, 2012, 66:322-329. |