Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 120-133.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.011
• Review • Previous Articles Next Articles
Yu Yang1 Li Jiang2 Zhang Zhao3 Fan Chunhai2
Online:
2015-04-22
Published:
2015-04-22
Yu Yang, Li Jiang, Zhang Zhao, Fan Chunhai. Advances on Self-Assembled DNA Nanostructures[J]. Biotechnology Bulletin, 2015, 31(4): 120-133.
[1]Seeman NC. Nanotechnology and the double helix[J]. Sci Am, 2004, 290(6):64-75. [2]Somoza á. Evolution of DNA origami[J]. Angew Chem Int Ed, 2009, 48(50):9406-9408. [3]Weiss PS. A conversation with Prof. Ned Seeman:founder of DNA nanotechnology[J]. ACS Nano, 2008, 2(6):1089-1096. [4]Seeman NC. Structural DNA nanotechnology:growing along with Nano Letters[J]. Nano Lett, 2010, 10(6):1971-1978. [5]LaBean TH. Nanotechnology:Another dimension for DNA art[J]. Nature, 2009, 459(7245):331-332. [6]Yang X, Wenzler LA, Qi J, et al. Ligation of DNA triangles containing double crossover molecules[J]. J Am Chem Soc, 1998, 120(38):9779-9786. [7]Winfree E, Liu F, Wenzler LA, et al. Design and self-assembly of two-dimensional DNA crystals[J]. Nature, 1998, 394(6693):539-544. [8]Rothemund PWK. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082):297-302. [9]Kuzuya A, Wang R, Sha R, et al. Six-helix and eight-helix DNA nanotubes assembled from half-tubes[J]. Nano Lett, 2007, 7(6):1757-1763. [10]Zheng JP, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal[J]. Nature, 2009, 461(7260):74-77. [11]Qian L, Wang Y, Zhang Z, et al. Analogic China map constructed by DNA[J]. Chin Sci Bull, 2006, 51(24):2973-2976. [12]Andersen ES, Dong M, Nielsen MM, et al. DNA origami design of dolphin-shaped structures with flexible tails[J]. ACS Nano, 2008, 2(6):1213-1218. [13]Andersen ES, Dong M, Nielsen MM, et al. Self-assembly of a nanoscale DNA box with a controllable lid[J]. Nature, 2009, 459(7243):73-76. [14]Ke Y, Sharma J, Liu M, et al. Scaffolded DNA origami of a DNA tetrahedron molecular container[J]. Nano Lett, 2009, 9(6):2445-2447. [15]Kuzuya A, Komiyama M. Design and construction of a box-shaped 3D-DNA origami[J]. Chem Commun, 2009, 28:4182-4184. [16]Douglas SM, Dietz H, Liedl T, et al. Self-assembly of DNA into nan-oscale three-dimensional shapes[J]. Nature, 2009, 459(7245):414-418. [17]Dietz H, Douglas SM, Shih WM. Folding DNA into twisted and curved nanoscale shapes[J]. Science, 2009, 325(5941):725-730. [18]Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space[J]. Science, 2011, 332(6027):342-346. [19]Ke Y, Ong LL, Shih WM, et al. Three-dimensional structures self-assembled from DNA bricks[J]. Science, 2012, 338(6111):1177-1183. [20]Douglas SM, Chou JJ, Shih WM. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination[J]. Proc Natl Acad Sci, 2007, 104(16):6644-6648. [21]Steinhauer C, Jungmann R, Sobey TL, et al. DNA origami as a nanoscopic ruler for super-resolution microscopy[J]. Angew Chem, Int Ed, 2009, 48(47):8870-8873. [22]Kershner RJ, Bozano LD, Micheel CM, et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces[J]. Nat Nanotechnol, 2009, 4(9):557-561. [23]Hung AM, Micheel CM, Bozano LD, et al. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami[J]. Nat Nanotechnol, 2010, 5(2):121-126. [24]Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays[J]. Science, 2008, 319(5860):180-183. [25] Kaganman I. An origami chip of DNA[J]. Nat Methods, 2008, 5(3):222. [26]Zhang Z, Wang Y, Fan C, et al. Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips[J]. Adv Mater, 2010, 22(24):2672-2675. [27]Chhabra R, Sharma J, Ke Y, et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures[J]. J Am Chem Soc, 2007, 129(34):10304-10305. [28]Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding[J]. Nat Nanotechnol, 2008, 3(7):418-422. [29]Lin C, Katilius E, Liu Y, et al. Self-assembled signaling aptamer DNA arrays for protein detection[J]. Angew Chem Int Ed, 2006, 45(32):5296-5301. [30]Lin C, Liu Y, Yan H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing[J]. Nano Lett, 2007, 7(2):507-512. [31]Lin C, Nangreave JK, Li Z, et al. Signal amplification on a DNA-tile-based biosensor with enhanced sensitivity[J]. Nanomed, 2008, 3(4):521-528. [32]Pei H, Liang L, Yao G, et al. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors[J]. Angew Chem Int Ed, 2012, 51(36):9020-9024. [33]Krishnan Y, Simmel FC. Nucleic acid based molecular devices[J]. Angew Chem Int Ed, 2011, 50(14):3124-3156. [34]Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures:controlling reactivity, sensing, logic operations, and assembly of complex structures[J]. Chem Rev(Washington, DC, U S), 2014, 114(5):2881-2941. [35]Mao CD, LaBean TH, Reif JH, et al. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules[J]. Nature, 2000, 407(6803):493-496. [36] Liu D, Balasubramanian S. A proton-fuelled DNA nanomachine [J]. Angew Chem Int Ed, 2003, 42(46):5734-5736. [37]Wang C, Huang Z, Lin Y, et al. Artificial DNA nano-spring powered by protons[J]. Adv Mater(Weinheim, Ger), 2010, 22(25):2792-2798. [38]Tian Y, He Y, Chen Y, et al. A DNAzyme that walks processively and autonomously along a one-dimensional track[J]. Angew Chem Int Ed, 2005, 44(28):4355-4358. [39]Wickham SFJ, Bath J, Katsuda Y, et al. A DNA-based molecular motor that can navigate a network of tracks[J]. Nat Nanotechnol, 2012, 7(3):169-173. [40]Wickham SFJ, Endo M, Katsuda Y, et al. Direct observation of stepwise movement of a synthetic molecular transporter[J]. Nat Nanotechnol, 2011, 6(3):166-169. [41]Gu H, Chao J, Xiao SJ, et al. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate[J]. Nat Nanotechnol, 2009, 4(4):245-248. [42]Gu H, Chao J, Xiao SJ, et al. A proximity-based programmable DNA nanoscale assembly line[J]. Nature, 2010, 465(7295):202-205. [43]Lund K, Manzo AJ, Dabby N, et al. Molecular robots guided by prescriptive landscapes[J]. Nature, 2010, 465(7295):206-210. [44]Pei R, Taylor SK, Stefanovic D, et al. Behavior of polycatalytic assemblies in a substrate-displaying matrix[J]. J Am Chem Soc, 2006, 128(39):12693-12699. [45]Smith LM. Nanotechnology:Molecular robots on the move[J]. Nature, 2010, 465(7295):167-168. [46]Li X, Liu DR. DNA-templated organic synthesis:nature’s strategy for controlling chemical reactivity applied to synthetic molecules[J]. Angew Chem Int Ed, 2004, 43(37):4848-4870. [47]Gartner ZJ, Tse BN, Grubina R, et al. DNA-templated organic synthesis and selection of a library of macrocycles[J]. Science, 2004, 305(5690):1601-1605. [48]Kanan MW, Rozenman MM, Sakurai K, et al. Reaction discovery enabled by DNA-templated synthesis and in vitro selection[J]. Nature, 2004, 431(7008):545-549. [49]Nielsen M, Thomsen AH, Clo E, et al. Synthesis of linear and tripoidal oligo(phenylene ethynylene)-based building blocks for application in modular DNA-programmed assembly[J]. J Org Chem, 2004, 69(7):2240-2250. [50]Blakskjaer P, Gothelf KV. Synthesis of an elongated linear oligo(phenylene ethynylene)-based building block for application in DNA-programmed assembly[J]. Org Biomol Chem, 2006, 4(18):3442-3447. [51]Brown RS, Nielsen M, Gothelf KV. Self-assembly of aluminium-salen coupled nanostructures from encoded modules with cleavable disulfide DNA-linkers[J]. Chem Commun, 2004, 13:1464-1465. [52]Gothelf KV, Brown RS. A modular approach to DNA-programmed self-assembly of macromolecular nanostructures[J]. Chemistry, 2005, 11(4):1062-1069. [53]Gothelf KV, Thomsen A, Nielsen M, et al. Modular DNA-programmed assembly of linear and branched conjugated nanostructures[J]. J Am Chem Soc, 2004, 126(4):1044-1046. [54]Nielsen M, Dauksaite V, Kjems J, et al. DNA-directed coupling of organic modules by multiple parallel reductive aminations and subsequent cleavage of selected DNA sequences[J]. Bioconjug Chem, 2005, 16(4):981-985. [55]Andersen CS, Yan H, Gothelf KV. Bridging one helical turn in double-stranded DNA by templated dimerization of molecular rods[J]. Angew Chem Int Ed, 2008, 47(30):5569-5572. [56]Andersen CS, Knudsen MM, Chhabra R, et al. Distance dependent interhelical couplings of organic rods incorporated in DNA 4-helix bundles[J]. Bioconjug Chem, 2009, 20(8):1538-1546. [57]Piperberg G, Wilner OI, Yehezkeli O, et al. Control of bioelectroca-talytic transformations on DNA scaffolds[J]. J Am Chem Soc, 2009, 131(25):8724-8725. [58]Tel-Vered R, Yehezkeli O, Yildiz HB, et al. Photoelectrochemistry with ordered CdS nanoparticle/relay or photosensitizer/relay dyads on DNA scaffolds[J]. Angew Chem, Int Ed, 2008, 47(43):8272-8276. [59]Elbaz J, Tel-Vered R, Freeman R, et al. Switchable motion of DNA on solid supports[J]. Angew Chem Int Ed, 2009, 48(1):133-137. [60]Wilner OI, Weizmann Y, Gill R, et al. Enzyme cascades activated on topologically programmed DNA scaffolds[J]. Nat Nanotechnol, 2009, 4(4):249-254. [61]Wang ZG, Wilner OI, Willner I. Self-assembly of aptamer-circular DNA nanostructures for controlled biocatalysis[J]. Nano Lett, 2009, 9(12):4098-4102. [62]Fu YM, Zeng DD, Chao J, et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors[J]. J Am Chem Soc, 2013, 135(2):696-702. [63]Le JD, Pinto Y, Seeman NC, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface[J]. Nano Lett, 2004, 4(12):2343-2347. [64]Pinto YY, Le JD, Seeman NC, et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding[J]. Nano Lett, 2005, 5(12):2399-2402. [65]Gerdon AE, Oh SS, Hsieh K, et al. Controlled delivery of DNA origami on patterned surfaces[J]. Small, 2009, 5(17):1942-1946. [66]Ding B, Deng Z, Yan H, et al. Gold nanoparticle self-similar chain structure organized by DNA origami[J]. J Am Chem Soc, 2010, 132(10):3248-3249. [67]Pal S, Deng Z, Ding B, et al. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures[J]. Angew Chem Int Ed, 2010, 49(15):2700-2704. [68]Sharma J, Chhabra R, Andersen CS, et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold[J]. J Am Chem Soc, 2008, 130(25):7820-7821. [69]Stearns LA, Chhabra R, Sharma J, et al. Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds[J]. Angew Chem Int Ed, 2009, 48(45):8494-8496. [70]Sharma J, Chhabra R, Cheng A, et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles[J]. Science, 2009, 323(5910):112-116. [71]Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. [72]Ouyang M, Huang JL, Lieber CM. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes[J]. Annu Rev Phys Chem, 2002, 53:201-220. [73] Dai H. Carbon nanotubes:synthesis, integration, and properties [J]. Acc Chem Res, 2002, 35(12):1035-1044. [74] Terrones M. Science and technology of the twenty-first century:synthesis, properties, and spplications of carbon nanotubes[J]. Annual Review of Materials Research, 2003, 33:419-501. [75]Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics[J]. Nat Nanotechnol, 2009, 4(10):627-633. [76]Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors:A review of fundamental and applied aspects[J]. Adv Mater, 2009, 21(1):29-53. [77]Dwyer C, Guthold M, Falvo M, et al. DNA-functionalized single-walled carbon nanotubes[J]. Nanotechnology, 2002, 13(5):601-604. [78]Dwyer C, Johri V, Cheung M, et al. Design tools for a DNA-guided self-assembling carbon nanotube technology[J]. Nanotechnology, 2004, 15(9):1240-1245. [79]Han X, Li Y, Deng Z. DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays[J]. Adv Mater, 2007, 19(11):1518-1522. [80]Maune HT, Han SP, Barish RD, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates[J]. Nat Nanotechnol, 2010, 5(1):61-66. [81]Walsh AS, Yin H, Erben CM, et al. DNA cage delivery to mammalian cells[J]. ACS Nano, 2011, 5(7):5427-5432. [82]Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5(11):8783-8789. [83]Hamblin GD, Carneiro KMM, Fakhoury JF, et al. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability[J]. J Am Chem Soc, 2012, 134(6):2888-2891. [84]Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells[J]. Angew Chem Int Ed, 2014, 53(30):7745-7750. [85]Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance[J]. Journal of the American Chemical Society, 2012, 134(32):13396-13403. [86]Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy[J]. ACS Nano, 2014, 8(7):6633-6643. [87]Zhao YX, Shaw A, Zeng XH, et al. DNA origami delivery system for cancer therapy with tunable release properties[J]. ACS Nano, 2012, 6(10):8684-8691. [88]Nishikawa M, Mizuno Y, Mohri K, et al. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice[J]. Biomaterials, 2011, 32(2):488-494. [89]Mohri K, Nishikawa M, Takahashi N, et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells[J]. ACS Nano, 2012, 6(7):5931-5940. [90]Rattanakiat S, Nishikawa M, Funabashi H, et al. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity[J]. Biomaterials, 2009, 30(29):5701-5706. [91]Liu X, Xu Y, Yu T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines[J]. Nano Lett, 2012, 12(8):4254-4259. [92]Schuller VJ, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures[J]. ACS Nano, 2011, 5(12):9696-9702. [93]Ouyang X, Li J, Liu H, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs[J]. Small, 2013, 9(18):3082-3087. [94]Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nano, 2012, 7(6):389-393. [95]Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics[J]. Proceedings of the National Academy of Sciences, 2013, 110(20):7998-8003. [96]Wu C, Han D, Chen T, et al. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy[J]. J Am Chem Soc, 2013, 135(49):18644-18650. [97]Douglas SM, Bachelet I, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads[J]. Science, 2012, 335(6070):831-834. [98]Pinheiro AV, Han DR, Shih WM, et al. Challenges and opportuni-ties for structural DNA nanotechnology[J]. Nat Nanotechnol, 2011, 6(12):763-772. [99]Kosuri S, Eroshenko N, LeProust EM, et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips[J]. Nat Biotechnol, 2010, 28(12):1295-U1108. [100]Lin CX, Rinker S, Wang X, et al. In vivo cloning of artificial DNA nanostructures[J]. Proc Natl Acad Sci USA, 2008, 105(46):17626-17631. [101] Bellot G, McClintock MA, Lin C, et al. Recovery of intact DNA nanostructures after agarose gel-based separation[J]. Nat Methods, 2011, 8(3):192-194. [102] Lin C, Perrault SD, Kwak M, et al. Purification of DNA-origami nanostructures by rate-zonal centrifugation[J]. Nucleic Acids Res, 2013, 41(2):e40. [103] Xing S, Jiang D, Li F, et al. Constructing higher-order DNA nanoarchitectures with highly purified DNA nanocages[J]. ACS Appl Mater Interfaces, 2014, doi:10. 1021/am505592e. |
[1] | ZHANG Qian, TIAN Jing-jing, LUO Yun-bo, XU Wen-tao. Research Progress on Functional Nucleic Acid Nanomachine Biosensors [J]. Biotechnology Bulletin, 2018, 34(9): 2-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||