Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (6): 28-36.doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.006
• Review • Previous Articles Next Articles
Yuan Lixia1,2, Mao Xue1, Yang Zhirong1, Xue Jin’ai1, Li Runzhi1
Received:
2015-02-15
Online:
2015-06-19
Published:
2015-06-20
Yuan Lixia, Mao Xue, Yang Zhirong, Xue Jin’ai, Li Runzhi. Metabolic Engineering of Seed Oil in Camelina sativa L. Crantz,a New Type of Industrial Oilseed Crop[J]. Biotechnology Bulletin, 2015, 31(6): 28-36.
[1] Singh R, Bollina V, Higgins EE, et al. Single-nucleotide polymorphi-sm identification and genotyping in Camelina sativa[J]. Molecular Breeding, 2015, 35:35. [2] Betancor MB, Sprague M, Usher S, et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish[J]. Scitific Reports, 2015, 5:8104. [3] Ruiz-Lopez N, Haslam RP, Usher S, et al. An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds[J]. Plant Biotechnology Journal, 2015, 3. DOI:10. 1111/pbi. 12328. [4] Li M, Wei F, Tawfall A, et al. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina[J]. Plant Biotechnology Journal, 2014. DOI:10. 1111/pbi. 12304. [5] Petrie JR, Shrestha P, Belide S, et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA[J]. PLoS One, 2014, 9(1):e85061. [6] Park W, Feng Y, Ahn SJ. Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa[J]. Biotechnology for Biofuels, 2014, 7:96. [7] Haslam RP. The modification of plant oil composition via metabolic engineering-better nutrition by design[J]. Plant Biotechnology Journal, 2013, 11:157-168. [8] Eynck C, Falk KC. Camelina(Camelina sativa)//Singh BP(ed)Biofuel Crops:Production, Physiology and Genetics[M]. Center for Agricuture and Bioscience International, 2013:369-391. [9] Ghamkhar K, Croser J, Aryamanesh N, et al. Camelina(Camelina sativa(L. )Crantz)as an alternative oilseed:molecular and ecogeographic analyses[J]. Genome, 2010, 53(7):558-567. [10] Séguin-Swartz G, Eynck C, Gugel R, et al. Diseases of Camelina sativa(false flax)[J]. Canadian Journal of Plant Pathology, 2009, 31:375-386. [11] Manca A, Pecchia P, Mapelli S, et al. Evaluation of genetic diversity in a Camelina sativa(L.)Crantz collection using microsatellite markers and biochemical traits[J]. Ggenetic Resources and Crop Evolution, 2013, 60(4):1223-1236. [12] 刘广瑞, 颜蓓蓓, 陈冠益. 航空生物燃料制备技术综述及展望[J]. 生物质化学工程, 2012, 46(3):45-48. [13] 钱伯章. Great Plains公司采用亚麻荠生产航空生物燃料[J]. 炼油技术与工程, 2010, 3:37. [14] 邓乾春, 黄凤洪, 黄庆德, 等. 一种高利用价值油料作物-亚麻荠的研究进展[J]. 中国油料作物学报, 2009, 31(4):551-559. [15] Zubr J, Matthaus B. Effects of growth conditions on fatty acids and to copherols in Camelina sativa oil[J]. Industrial Crops and Products, 2002, 15:155-162. [16] Karvonen HM, Tapola NS, Uusitupa MI, et al. The effect of vegetable oil-based cheese on serum total and lipoprotein lipids[J]. European Journal of Clinical Nutrition, 2002, 56(11):1094-1101. [17] 邓曙东, 张青文. 亚麻荠种植和利用的研究现状[J]. 植物学通报, 2004, 21(3):376-382. [18] Matthaus B, Zubr J. Variability of specific components in Camelina sativa oilseed cakes[J]. Industrial Crop sand Products, 2000, 12(1):9-18. [19] Markéta S. Fatty acid composition of Camelina sativa as affected by combined nitrogen and sulphur fertilization[J]. African Journal of Agricultural Research, 2011, 6(16):3919-3923. [20] Shukla VKS, Dutta PC, Artz WE. Camelina oil and its unusual cholesterol content[J]. Journal of the American Oil Chemists’ Society, 2002, 79(10):965-969. [21] Ruiz-Lopez N, Haslam RP, Napier JA, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop[J]. The Plant Journal, 2014, 77(2):198-208. [22] Tong W, Kevin BH, Robert M. Antioxidant activity of phytosterols, oryzanol and other phytosterol conjugates[J]. Journal of the American Oil Chemists’ Society, 2002, 79(12):1201-1206. [23] Velasco L, Fernandez-Martinez JM. Breeding oilseed crops for improved oil quality[J]. Journal of Crop Production, 2002, 5:309-344. [24] Vollmann J, Grausgruber H, Stift G, et al. Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism[J]. Plant Breeding, 2005, 124(5):446-453. [25] Vollmann J, Moritz T, Kargl C, et al. Agronomic evaluation of camelina genotypes selected for seed quality characteristics[J]. Industrial Crops and Products, 2007, 26(3):270-277. [26] Gugel RK, Falk KC. Agronomic and seed quality evaluation of Camelina sativa in western Canada[J]. Canadian Journal of Plant Science, 2006, 86(4):1047-1058. [27] Janick J, Paris HS, Parrish DC. The cucurbits of mediterranean antiquity:identification of taxa from ancient images and descriptions[J]. Annals of Botany, 2007, 100(7):1441-1457. [28] 杜润鸿. 油料家园的一枝奇葩——荠蓝[J]. 粮油加工与食品机械, 2005, 4:23-24. [29] Luczkiewicz T, Szewczyk D. Variability of some plant traits of Camelina sativa L. in g1-3 generation[J]. Rosliny Oleiste, 1997, 18(1):83-90. [30] Buchsenschutz NA, Schuster A, Friedt W. Breeding for modified fatty acid composition via experimental mutagenesis in Camelina sativa(L. )Crtz. [J]. Industrial Crops and Products, 1998, 7:291-295. [31] Gehringer A, Friedt W, Luhs W, et al. Genetic mapping of agronomic traits in false flax(Camelina sativa subsp. sativa)[J]. Genome, 2006, 49(12):1555-1563. [32] 黄友志. 油料新作物亚麻荠的初步研究[D]. 北京:中国农业大学, 2002. [33] 张永泰, 毛善婧, 李爱民, 等. 亚麻荠原生质体培养再生植株的研究[J]. 扬州大学学报:农业与生命科学版, 2006, 27(4):78-80. [34] 高立虎. 亚麻荠高效再生体系创建及KLU转化亚麻荠研究[D]. 石河子:石河子大学, 2013. [35] Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation[J]. Plant Cell, 2008, 27:273-278. [36] 岳爱琴, 孙希平, 李润植. 食用植物油脂的代谢工程[J]. 植物生理与分子生物学学报, 2007, 33(6):489-498. [37] 吴永美, 毛雪, 王书建, 等. 植物ω-7脂肪酸的系统代谢工程[J]. 植物学报, 2011, 46(5):575-585. [38] Malik MR, Yang W, Patterson N, et al. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds[J]. Plant Biotechnology Journal, 2014, DOI:10. 1111/pbi. 12290. [39] Kang J, Snapp AR, Lu C. Identification of three genes encoding microsomal oleate desaturases(FAD2)from the oilseed crop Camelina sativa[J]. Plant Physiology and Biochemistry, 2011, 49(2):223-229. [40] Cahoon EB, Shockey JM, Dietrich CR, et al. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks:solving bottlenecks in fakty acid flux[J]. Current Opinion in Plant Biology, 2007, 10(3):236-244. [41] Rodriguez-Rodriguez MF, Salas JJ, Garces R, et al. Acyl-ACP thioesterases from Camelina sativa:cloning, enzymatic characterization and implication in seed oil fatty acid composition[J]. Phytochemistry, 2014, 107:7-15. [42] Xue ZX, Sharpe PL, Hong SP, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica[J]. Nature Biotechnology, 2013, 31;734-740. [43] Wu Y, Li R, Hildebrand DF. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry[J]. Progress in Lipid Research, 2012, 51(4):340-349. [44] Xue JA, Mao X, Yang ZR, et al. Expression of yeast acyl-CoA-9 desaturase leads to accumulation of unusual monounsaturated fatty acids in soybean seeds[J]. Biotechnology Letters, 2013, 35(6):951-959. [45] 薛金爱, 毛雪, 吴永美, 等. 酿酒酵母脂酰-△9脱氢酶亚细胞定位表达及其对烟草脂肪酸合成的影响[J]. 生物工程学报, 2013, 29(5):630-645. [46] Nguyen HT, Silva JE, Podicheti R, et al. Camelina seed transcriptome:a tool for meal and oil improvement and translational research[J]. Plant Biotechnology Journal, 2013, 11(6):759-769. [47] Lu C, Napier JA, Clemente TE, et al. New frontiers in oilseed biotechnology:meeting the growing global demand for vegetable oils for food, feed, biofuel, and industrial uses[J]. Current Opinion in Biotechnology, 2011, 22:252-259. [48] Collins-Silva JC, Cahoon EB. Camelina:A designer biotech oilseed crop[J]. Inform, 2011, 22:610-613. [49] Kagale S, Koh C, Nixon J, et al. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure[J]. Nature Communications, 2014, 23(5):3706. [50] Hutcheon C, Ditt RF, Beilstein M, et al. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes[J]. BMC Plant Biology, 2010, 10:233. |
[1] | WANG Gui-fang, YAO Yuan-tao, XU Hai-feng, XIANG Kun, LIANG Jia-hui, ZHANG Shu-hui, WANG Wen-ru, ZHANG Ming-juan, ZHANG Mei-yong, CHEN Xin. The Gene JrSnRK1α1.1 of Walnut Regulates Seed Oil Synthesis and Accumulation [J]. Biotechnology Bulletin, 2023, 39(9): 183-191. |
[2] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[3] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[4] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[5] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[6] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[7] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[8] | HUANG Ya-ning, ZHANG Hai-jiao, HAN Yu-qian, LIU Zun-ying. Effects of Supercritical CO2 Combined with Ginger Essential Oil on the Sterilization of Vibrio parahaemolyticus and Its Mechanism [J]. Biotechnology Bulletin, 2023, 39(5): 297-305. |
[9] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[10] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[11] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[12] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[13] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[14] | LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples [J]. Biotechnology Bulletin, 2022, 38(8): 84-91. |
[15] | JIANG Xian-zhe, ZHANG Bo-yan, LUO Hai-ling, ZHANG Xin-meng, WANG Bing. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity [J]. Biotechnology Bulletin, 2022, 38(7): 128-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||