[1] Boyer JS. Plant productivity and environment[J]. Science, 1982, 218(4571):443-448. [2] Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042):616-620. [3] 张俊环, 王玉柱, 孙浩元, 等. 外源水杨酸对低温下杏花抗氧化酶和CBF转录因子表达的影响[J]. 植物生理学报, 2014, 50(2):171-177. [4] Cramer GR, Urano K, Delrot S, et al. Effects of abiotic stress on plants:a systems biology perspective[J]. BMC Plant Biol, 2011, 11:163. [5] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses[J]. Annu Rev Plant Biol, 2006, 57:781-803. [6] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94:1035-1040. [7] Thomashow MF. Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:571-599. [8] 林元震, 郭海, 刘纯鑫, 等. 赤桉抗寒转录因子ICE1基因的分子克隆与表达分析[J]. 植物生理学报, 2011, 47:488-494. [9] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1, a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Gene Dev, 2003, 17(8):1043-1054. [10] Wang Y, Jiang CJ, Li YY, et al. CsICE1 and CsCBF1:two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Rep, 2012, 31(1):27-34. [11] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8):1391-1406. [12] Satoko M, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes[J]. Mol Genet Genomics, 2010, 283(2):185-196. [13] Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.[J] Plant J, 2007, 50(1):54-69. [14] Zhou ML, Tang YX, Wu YM. Genome-wide analysis of AP2/ERF transcription factor family in Zea mays[J]. Curr Bioinform, 2012, 7(3):324-332. [15] Sazegari S, Niazi A. Isolation and molecular characterization of wheat(Triticum aestivum)dehydration responsive element binding factor(DREB)isoforms[J]. Aust J Crop Sci, 2012, 6(6):1037-1044. [16] Shen YG, He SJ, Zhang WK, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor Appl Genet, 2003, 106(5):923-930. [17] Jing T, Chang Q, Li W, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa[J]. Plant Cell Tiss Org, 2010, 100(2):219-227. [18] Mizoi J, Ohori T, Moriwaki T, et al. GmDREB2A;2, a canonical dehydration-responsive element-binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression[J]. Plant Physiol, 2013, 161(1):346-361. [19] Xiao H, Siddigua M, Braybrook S, et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid[J]. Plant Cell Environ, 2006, 29(7):1410-1421. [20] Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities[J]. Plant Mol Biol, 2004, 54(5):767-781. [21] Novillo F, Alonso JM, Ecker JR, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2004, 101(11):3985-3990. [22] Skinner JS, Zitzewitz J, Szucs P, et al. Structural, functional, and physogenetic characterization of a large CBF gene family in barley[J]. Plant Mol Biol, 2005, 59(4):533-551. [23] Zhang L, Li Z, Li J, et al. Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis[J]. PLoS One, 2013, 8(6):e61810. [24] 王法微, 刘洋, 吴学彦, 等. 山葡萄VaCBF1转录因子基因的克隆与表达分析[J]. 西北农林科技大学学报:自然科学版, 2013, 12(41):86-92. [25] Xu MY, Li LH, Fan YL, et al. ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice(Oryza sativa)without yield penalty[J]. Plant Cell Rep, 2013, 30(10):1949-1957. [26] Li ZJ, Zhang LL, Li JF, et al. Isolation and functional characterization of the ShCBF1 gene encoding a CTR/DRE-binding factor from the wild tomato species Solanum habrochaites[J]. Plant Physiol Bioch, 2014, 74:294-303. [27] Duan LN, Dietrich D, Ng CH, et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings[J]. Plant Cell, 2013, 25(1):324-341.
|