Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (2): 7-13.doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.003
• Review • Previous Articles Next Articles
LI Zhen-yi, LONG Rui-cai, ZHANG Tie-jun, YANG Qing-chuan, KANG Jun-mei
Received:
2015-05-06
Online:
2016-02-24
Published:
2016-02-25
LI Zhen-yi, LONG Rui-cai, ZHANG Tie-jun, YANG Qing-chuan, KANG Jun-mei. Research Progress on Plant Heat Shock Protein[J]. Biotechnology Bulletin, 2016, 32(2): 7-13.
[1]Ritossa F.A new puffing pattern induced by temperature shock and DNP in Drosophila[J].Experientia, 1962, 18(12):571-573. [2]Tissieres A, Mitchell HK, Tracy UM.Protein synthesis in salivary glands of Drosophila melanogaster:Relation to chromosome puffs[J].Journal of Molecular Biology, 1974, 84(3):389-398. [3] Sorger PK, Lewis MJ, Pelham HR.Heat shock factor is regulated differently in yeast and heLa cells[J].Nature, 1987, 329:81-84. [4]Barnett T, Altschuler M, McDaniel CN, et al.Heat shock induced proteins in plant cells[J].Developmental Genetics, 1979, 1(4):331-340. [5]Wang W, Vinocur B, Shoseyov O, et al.Role of plant heat shock proteins and molecular chaperones in the abiotic stress response[J].Trends in Plant Science, 2004, 9:244-252. [6]Timperio AM, Egidi MG, Zolla L.Proteomics applied on plant abiotic stresses:Role of heat shock proteins(HSP)[J].Journal of Proteomics, 2008, 71(4):391-411. [7]Waters ER, Lee GJ, Vierling E.Evolution, structure and function of the small heat shock proteins in plants[J].Journal of Experimental Botany, 1996, 47(3):325-338. [8]许声涛, 孙文香, 田进平, 等.植物热激蛋白HSP100/ClpB及其在提高植物抗热性和抗寒性中的应用[J].植物生理学通讯, 2008, 44(4):804-809. [9]Agarwal M, Katiyar-Agarwal S, Sahi C, et al.Arabidopsis thaliana Hsp100 proteins:kith and kin[J].Cell Stress Chaperones, 2001, 6:219-224. [10] Adam Z, Adamska I, Nakabayashi K, et al.Chloroplast and mitoch-ondrial proteases in Arabidopsis.A proposed nomenclature[J].Plant Physiology, 2001, 125:1912-1918. [11] Keeler SJ, Boettger CM, Haynes JG, et al.Acquired thermotolerance and expression of the HSP100/ClpB genes of Lima bean[J].Plant Physiology, 2000, 123:1121-1132. [12]杨金莹, 孙颖, 孙爱清, 等.番茄LeHsp110 ClpB基因的分子克隆及其对植物耐热性的影响[J].生物工程学报, 2006, 22(1):52-57. [13]Bowen J, Lay-Yee M, Plummer K, et al.The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells[J].Journal of Plant Physiology, 2002, 159:599-606. [14]Grover A, Mittal D, Negi M, et al.Generating high temperature tolerant transgenic plants:Achievements and challenges[J].Plant Science, 2013, 205:38-47. [15]裴丽丽, 徐兆师, 尹丽娟, 等.植物热激蛋白90的分子作用机理及其利用研究进展[J].植物遗传资源学报, 2013, 14(1):109-114. [16]Xu J, Xue C, Xue D, et al.Overexpression of GmHsp90s, a heat shock protein 90(Hsp90)gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J].PLoS One, 2013, 8(7):e69810. [17]Queitsch C, Sangster TA, Lindquist S.Hsp90 as a capacitor of phenotypic variation[J].Nature, 2002, 417:618-624. [18]Krishna P, Gloor G.The Hsp90 family of proteins in Arabidopsis thaliana[J].Cell Stress Chaperones, 2001, 6:238-246. [19]Rutherford SL, Lindquist S.Hsp90 as a capacitor for morphological evolution[J].Nature, 1998, 396:336-342. [20]陈兰英, 赵祯, 李冰冰, 等.HSP70肿瘤免疫作用及其基因表达调节[J].中国肿瘤, 2004, 13(7):430-436. [21]Scharf KD, Berberich T, Ebersberger I, et al.The plant heat stress transcription factor(Hsf)family:structure, function and evolution[J].Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2012, 1819(2):104-119. [22]孔凡英.番茄叶绿体DnaJ蛋白LeCDJ1功能分析[D].泰安:山东农业大学, 2014. [23] Su PH, Li H.Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds[J].Plant Physiology, 2008, 146(3):1231-1241. [24]Kim SR, An G.Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions[J].Journal of Plant Physiology, 2013, 170(9):854-863. [25]Latijnhouwers M, Xu XM, Moller SG.Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J].Planta, 2010, 232(3):567-578. [26]Song A, Zhu X, Chen F, et al.A Chrysanthemum heat shock protein confers tolerance to abiotic stress[J].International Journal Molecular Science, 2014, 15:5063-5078. [27]Al-Whaibi MH.Plant heat-shock proteins:a mini review[J].Journal of King Saud University-Science, 2011, 23(2):139-150. [28]Chow AM, Beraud E, Tang DWF, et al.Hsp60 protein pattern in coral is altered by environmental changes in light and temperature[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2012, 161(3):349-353. [29]Tominaga H, Coury DA, Amano H, et al.cDNA cloning and expression analysis of two heat shock protein genes, Hsp90 and Hsp60, from a sterile Ulva pertusa(Ulvales, Chlorophyta)[J].Fisheries science, 2012, 78(2):415-429. [30]Waters ER.The evolution, function, structure, and expression of the plant sHSPs[J].Journal of Experimental Botany, 2013, 64(2):391-403. [31]Hilton GR, Lioe H, Stengel F, et al.Small heat-shock proteins:paramedics of the cell[J].Topics in Current Chemistry, 2013, 328:69-98. [32]Dafny-Yelin M, Tzfira T, Vainstein A, et al.Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J].Plant Molecular Biology, 2008, 67:363-373. [33]Maimbo M, Ohnishi K, Hikichi Y, et al.Induction of a small heat shock protein and its functional roles in nicotiana plants in the defense.Response against Ralstonia solanacearum[J].Plant Physiology, 2014, 145(4):1588-1599. [34]Ma CL, Haslbeck M, Babujee L, et al.Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes[J].Plant Physiology, 2006, 141(1):47-60. [35]Sato Y, Yokoya S.Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7[J].Plant Cell Reports, 2008, 27(2):329-334. [36]Lee KW, Cha JY, Kim KH, et al.Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress[J].Biotechnology Letters, 2012, 34(1):167-174. [37]Trent JD.A review of acquired thermotolerance, heat-shock proteins and molecular chaperones in archaea[J].FEMS Microbiology Reviews, 1996, 18:249-258. [38]Horwitz J.alpha-Crystaline can function as a molecular chaperone[J].Proceedings of the National Academy of Sciences, 1992, 89:10449-10453. [39]Pratt WB, Toft DO.Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery[J].Experimental Biology and Medicine, 2003, 228(2):111-133. [40]Rutherford SL.Between genotype and phenotype:protein chaperones and evolvability[J].Nature Reviews Genetics, 2003, 4:263-274. [41]邹杰, 陈信波, 刘爱玲, 等.植物热激蛋白与作物非生物抗逆性的改良[J].植物生理学通迅, 2007, 43(5):981-984. [42]McLellan CA, Turbyville TJ, Wijeratne EM, et al.A Rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor[J].Plant Physiology, 2007, 145:174-182. [43]黄祥富, 黄上志, 傅家瑞.植物热激蛋白的功能及其基因表达的调控[J].植物学通报, 1999, 16(5):530-536. [44]Wahid A, Gelani S, Ashraf M, et al.Heat tolerance in plants:An overview[J].Environmental and Experimental Botany, 2007, 61:199-223. [45]Sangster TA, Queitsch C.The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J].Current Opinion in Plant Biology, 2005, 8(1):86-92. [46]Yoshida T, Ohama N, Nakajima J, et al.Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J].Molecular Genetics and Genomics, 2011, 286(5-6):321-332. [47]Li B, Liu H, Mu R, et al.Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro[J].Chinese Science Bulletin, 2003, 48(3):255-258. |
[1] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[2] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[3] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[4] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[5] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[6] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[7] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[10] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[11] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[12] | MA Qiu-yu, YUAN Fang. Research Progress in Salt Gland Secretion and Development in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 74-85. |
[13] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[14] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[15] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||