[1]Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for Phosphoproteomics[J]. Proteomics, 2009, 9(6):1451-1468. [2]Duan JJ, Lozada AF, Gou CY, et al. Nicotine recruits glutamate receptors to postsynaptic sites[J]. Mol Cell Neurosci, 2015, 68:340-349. [3]Linke D, Koudelka T, Becker A, Tholey A. Identification and relative quantification of phosphopeptides by a combination of multi-protease digestion and isobaric labeling[J]. Rapid Commun Mass Spectrom, 2015, 29(10):919-926. [4]Blazek M, Santisteban TS, Zengerle R, et al. Analysis of fast protein phosphorylation kinetics in single cells on a microfluidic chip[J]. Lab Chip, 2014, 15(3):726-734. [5]Luo R, Zhou C, Lin J, Yang D, et al. Identification of in vivo protein phosphorylation sites in human pathogen Schistosoma japonicum by a phosphoproteomic approach[J]. Proteomics, 2012, 75:868-877. [6]Zhang B, Liu JY. Mass spectrometric identification of in vivo phosphorylation sites of differentially expressed proteins in elongating cotton fiber cells[J]. PLoS One, 2013, 8:e58758. [7]Lelli KM, Noro B, Mann RS. Variable motif utilization in homeotic selector(Hox)-cofactor complex formation controls specificity[J]. Proc Natl Acad Sci USA, 2011, 108(52):21122-21127. [8]Dai J, Mou Z, Shen S, et al. Bioinformatic analysis of Msx1 and Msx2 involved in craniofacial development[J]. J Craniofac Surg, 2014, 25(1):129-134. [9]Zhang W, Qu HC, Zhang Y. Association of MSX1 and TGF-β1 genetic polymorphisms with hypodontia:meta-analysis[J]. Genet Mol Res, 2014, 13(4):10007-10016. [10]Nassif A, Senussi I, Meary F, et al. Msx1 role in craniofacial bone morphogenesis[J]. Bone, 2014, 66:96-104. [11]Reddy NA, Adusumilli G, Devanna R, et al. MSX1 gene variant - its presence in tooth absence - a case control genetic study[J]. J Int Oral Health, 2013, 5(5):20-26. [12]Mundstock CA, Bortolini MC, Salzano FM, et al. MSX1 and PAX9 investigation in monozygotic twins with variable expression of tooth agenesis[J]. Twin Res Hum Genet, 2013, 16(6):1112-1116. [13]Souza LT1, Kowalski TW, Collares MV, et al. MSX1 gene and nonsyndromic oral clefts in a Southern Brazilian population[J]. Braz J Med Biol Res, 2013, 46(7):555-558. [14]Yilmaz A, Engeler R, Constantinescu S, et al. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation[J]. Stem Cell Res, 2015, 15(3):542-553. [15]Seo YJ, Park JW, Kim YH, et al. Associations between the risk of tooth agenesis and single-nucleotide polymorphisms of MSX1 and PAX9 genes in nonsyndromic cleft patients[J]. Angle Orthod, 2013, 83(6):1036-1042. [16]Kim NY, Kim YH, Park JW, et al. Association between MSX1 SNPs and nonsyndromic cleft lip with or without cleft palate in the Korean population[J]. J Korean Med Sci, 2013, 28(4):522-526. [17]Xie H, Cherrington BD, Meadows JD, et al. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development[J]. Mol Endocrinol, 2013, 27(3):422-436. [18]Rafighdoost H, Hashemi M, Narouei A, et al. Association between CDH1 and MSX1 gene polymorphisms and the risk of nonsyndromic cleft lip and/or cleft palate in a southeast Iranian population[J]. Cleft Palate Craniofac J, 2013, 50(5):e98-e104. [19]Wang J, Abate-Shen C. Transcriptional repression by the Msx1 homeoprotein is associated with global redistribution of the H3K27me3 repressive mark to the nuclear periphery[J]. Nucleus, 2012, 3(2):155-161. [20]Song YJ, Lee H. PIAS1 negatively regulates ubiquitination of Msx1 homeoprotein independent of its SUMO ligase activity[J]. Mol Cells, 2011, 32(3):221-226. [21]Wang J, Kumar RM, Biggs VJ, et al. The Msx1 homeoprotein recruits Polycomb to the nuclear periphery during development[J]. Dev Cell, 2011, 21(3):575-588. [22]Wang JQ, Abate-Shen C. The msx1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells[J]. PLoS One, 2012, 7(5):e37647. |