Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 218-226.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0565
Previous Articles Next Articles
LIANG Xing-xing1,2(), WANG Jia1, XU Wen-tao1()
Received:
2021-04-27
Online:
2022-02-26
Published:
2022-03-09
Contact:
XU Wen-tao
E-mail:Lxx980901@163.com;xuwentao@cau.edu.cn
LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs[J]. Biotechnology Bulletin, 2022, 38(2): 218-226.
[1] |
Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases[J]. Nat Rev Drug Discov, 2013, 12(6):447-464.
doi: 10.1038/nrd4010 pmid: 23722347 |
[2] |
Khandazhinskaya A, Matyugina E, Solyev P, et al. Investigation of 5'-norcarbocyclic nucleoside analogues as antiprotozoal and antibacterial agents[J]. Molecules, 2019, 24(19):3433.
doi: 10.3390/molecules24193433 URL |
[3] | Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, et al. A review:Mechanism of action of antiviral drugs[J]. Int J Immunopathol Pharmacol, 2021, 35:20587384211002621. |
[4] | Good SS, Westover J, Jung KH, et al. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19[J]. Antimicrob Agents Chemother, 2021, 65(4):e02479-20. |
[5] |
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs:structural requirements for substrate recognition[J]. Med Res Rev, 2012, 32(2):428-457.
doi: 10.1002/med.20221 pmid: 21287570 |
[6] |
Ferey J, Da Silva D, Colas C, et al. Monitoring of phosphorylation using immobilized kinases by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry[J]. Talanta, 2019, 205:120120.
doi: 10.1016/j.talanta.2019.120120 URL |
[7] |
De Clercq E. Strategies in the design of antiviral drugs[J]. Nat Rev Drug Discov, 2002, 1(1):13-25.
pmid: 12119605 |
[8] |
Balzarini J. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives[J]. Pharm World Sci, 1994, 16(2):113-126.
doi: 10.1007/BF01880662 pmid: 8032337 |
[9] |
Gollnest T, Dinis de Oliveira T, Rath A, et al. Membrane-permeable triphosphate prodrugs of nucleoside analogues[J]. Angew Chem Int Ed Engl, 2016, 55(17):5255-5258.
doi: 10.1002/anie.201511808 URL |
[10] | Zhang YX, Gao YK, Wen XJ, et al. Current prodrug strategies for improving oral absorption of nucleoside analogues[J]. Asian J Pharm Sci, 2014, 9(2):65-74. |
[11] |
De Clercq E. Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections[J]. Clin Microbiol Rev, 2003, 16(4):569-596.
doi: 10.1128/CMR.16.4.569-596.2003 pmid: 14557287 |
[12] |
Meier C. Cyclo sal phosphates as chemical Trojan horses for intracellular nucleotide and glycosylmonophosphate delivery—chemistry meets biology[J]. Eur J Org Chem, 2006, 2006(5):1081-1102.
doi: 10.1002/ejoc.v2006:5 URL |
[13] |
Siegel D, Hui HC, Doerffler E, et al. Discovery and synjournal of a phosphoramidate prodrug of a pyrrolo[2, 1-f][triazin-4-amino]adenine C-nucleoside(GS-5734)for the treatment of Ebola and emerging viruses[J]. J Med Chem, 2017, 60(5):1648-1661.
doi: 10.1021/acs.jmedchem.6b01594 URL |
[14] |
Li GD, Yue TT, Zhang P, et al. Drug discovery of nucleos(t)ide antiviral agents:dedicated to prof. dr. Erik de clercq on occasion of his 80th birthday[J]. Molecules, 2021, 26(4):923.
doi: 10.3390/molecules26040923 URL |
[15] |
Pradere U, Garnier-Amblard EC, Coats SJ, et al. Synjournal of nucleoside phosphate and phosphonate prodrugs[J]. Chem Rev, 2014, 114(18):9154-9218.
doi: 10.1021/cr5002035 pmid: 25144792 |
[16] |
Pertusati F, Pileggi E, Richards J, et al. Drug repurposing:phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials[J]. J Antimicrob Chemother, 2020, 75(10):2864-2878.
doi: 10.1093/jac/dkaa268 pmid: 32688391 |
[17] |
Farquhar D, Srivastva DN, Kattesch NJ, et al. Biologically reversible phosphate-protective groups[J]. J Pharm Sci, 1983, 72(3):324-325.
doi: 10.1002/jps.2600720332 URL |
[18] |
Farquhar D, Khan S, Srivastva DN, et al. Synjournal and antitumor evaluation of Bis[(pivaloyloxy)methyl]2'-Deoxy-5-fluorouridine 5'-Monophosphate(FdUMP):a strategy To introduce nucleotides into cells[J]. J Med Chem, 1994, 37(23):3902-3909.
pmid: 7966151 |
[19] |
Hamada M, Roy V, McBrayer TR, et al. Synjournal and broad spectrum antiviral evaluation of bis(POM)prodrugs of novel acyclic nucleosides[J]. Eur J Med Chem, 2013, 67:398-408.
doi: 10.1016/j.ejmech.2013.06.053 URL |
[20] |
Tera M, Glasauer SMK, Luedtke NW. In vivo incorporation of azide groups into DNA by using membrane-permeable nucleotide triesters[J]. Chembiochem, 2018, 19(18):1939-1943.
doi: 10.1002/cbic.v19.18 URL |
[21] | Peyrottes S, Egron D, Lefebvre I, et al. SATE pronucleotide approaches:an overview[J]. Mini Rev Med Chem, 2004, 4(4):395-408. |
[22] | Gouy MH, Jordheim LP, Lefebvre I, et al. Special feature of mixed phosphotriester derivatives of cytarabine[J]. Bioorg Med Chem, 2009, 17(17):6340-6347. |
[23] |
Milisavljevic N, Konkolová E, Kozák J, et al. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphoshates against emerging RNA viruses[J]. ACS Infect Dis, 2021, 7(2):471-478.
doi: 10.1021/acsinfecdis.0c00829 URL |
[24] |
Meier C. cycloSal-pronucleotides design of chemical Trojan horses[J]. Mini Rev Med Chem, 2002, 2(3):219-234.
doi: 10.2174/1389557023406205 URL |
[25] |
Kamata M, Takeuchi T, Hayashi E, et al. Synjournal of nucleotide analogues, EFdA, EdA and EdAP, and the effect of EdAP on hepatitis B virus replication[J]. Biosci Biotechnol Biochem, 2020, 84(2):217-227.
doi: 10.1080/09168451.2019.1673696 URL |
[26] |
Rios Morales EH, Balzarini J, Meier C. Stereoselective synjournal and antiviral activity of methyl-substituted cycloSal-pronucleotides[J]. J Med Chem, 2012, 55(16):7245-7252.
doi: 10.1021/jm3008085 pmid: 22827702 |
[27] |
Mehellou Y, Balzarini J, McGuigan C. Aryloxy phosphoramidate triesters:a technology for delivering monophosphorylated nucleosides and sugars into cells[J]. ChemMedChem, 2009, 4(11):1779-1791.
doi: 10.1002/cmdc.200900289 pmid: 19760699 |
[28] |
Bessières M, Hervin V, Roy V, et al. Highly convergent synjournal and antiviral activity of(E)-but-2-enyl nucleoside phosphonoamidates[J]. Eur J Med Chem, 2018, 146:678-686.
doi: S0223-5234(18)30108-9 pmid: 29407990 |
[29] |
Dentmon ZW, Kaiser TM, Liotta DC. Synjournal and antiviral activity of a series of 2'-C-methyl-4'-thionucleoside monophosphate prodrugs[J]. Molecules, 2020, 25(21):5165.
doi: 10.3390/molecules25215165 URL |
[30] |
Pruijssers AJ, George AS, Schäfer A, et al. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice[J]. Cell Rep, 2020, 32(3):107940.
doi: S2211-1247(20)30921-9 pmid: 32668216 |
[31] |
Warnecke S, Meier C. Synjournal of nucleoside Di- and triphosphates and dinucleoside polyphosphates with cycloSal-nucleotides[J]. J Org Chem, 2009, 74(8):3024-3030.
doi: 10.1021/jo802348h pmid: 19320463 |
[32] | Ju J, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV Polymerase[J]. Pharmacol Res Perspect, 2020, 8(6):e00674. |
[33] |
Wang G, Dyatkina N, Prhavc M, et al. Synjournal and anti-HCV activities of 4'-fluoro-2'-substituted uridine triphosphates and nucleotide prodrugs:discovery of 4'-fluoro-2'- C-methyluridine 5'-phosphoramidate prodrug(AL-335)for the treatment of hepatitis C infection[J]. J Med Chem, 2019, 62(9):4555-4570.
doi: 10.1021/acs.jmedchem.9b00143 URL |
[34] |
Groaz E, de Jonghe S. Overview of biologically active nucleoside phosphonates[J]. Front Chem, 2021, 8:616863.
doi: 10.3389/fchem.2020.616863 URL |
[35] |
Furman PA, Fyfe JA, St Clair MH, et al. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase[J]. PNAS, 1986, 83(21):8333-8337.
pmid: 2430286 |
[36] |
Weinschenk L, Gollnest T, Schols D, et al. Bis(benzoyloxybenzyl)-DiPPro nucleoside diphosphates of anti-HIV active nucleoside analogues[J]. ChemMedChem, 2015, 10(5):891-900.
doi: 10.1002/cmdc.201500063 pmid: 25847660 |
[37] |
Hostetler KY, Stuhmiller LM, Lenting HB, et al. Synjournal and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides[J]. J Biol Chem, 1990, 265(11):6112-6117.
pmid: 2318849 |
[38] | van Wijk GMT, Hostetler KY, van den Bosch H. Lipid conjugates of antiretroviral agents:Release of antiretroviral nucleoside monophosphates by a nucleoside diphosphate diglyceride hydrolase activity from rat liver mitochondria[J]. Biochim et Biophys Acta BBA Lipids Lipid Metab, 1991, 1084(3):307-310. |
[39] |
Kreimeyer A, Ughetto-Monfrin J, Namane A, et al. Synjournal of acylphosphates of purine ribonucleosides[J]. Tetrahedron Lett, 1996, 37(48):8739-8742.
doi: 10.1016/S0040-4039(96)02016-3 URL |
[40] |
Bonnaffé D, Dupraz B, Ughetto-Monfrin J, et al. Potential lipophilic nucleotide prodrugs:synjournal, hydrolysis, and antiretroviral activity of AZT and d4T acyl nucleotides[J]. J Org Chem, 1996, 61(3):895-902.
doi: 10.1021/jo951354p URL |
[41] |
Meier C, Jessen HJ, Schulz T, et al. Rational development of nucleoside diphosphate prodrugs:DiPPro-compounds[J]. Curr Med Chem, 2015, 22(34):3933-3950.
pmid: 26303175 |
[42] |
Pertenbreiter F, Balzarini J, Meier C. Nucleoside mono- and diphosphate prodrugs of 2', 3'-dideoxyuridine and 2', 3'-dideoxy-2', 3'-didehydrouridine[J]. ChemMedChem, 2015, 10(1):94-106.
doi: 10.1002/cmdc.201402295 pmid: 25209965 |
[43] |
Weinschenk L, Schols D, Balzarini J, et al. Nucleoside diphosphate prodrugs:nonsymmetric DiPPro-nucleotides[J]. J Med Chem, 2015, 58(15):6114-6130.
doi: 10.1021/acs.jmedchem.5b00737 pmid: 26125628 |
[44] |
Huchting J, Vanderlinden E, Winkler M, et al. Prodrugs of the phosphoribosylated forms of hydroxypyrazinecarboxamide pseudobase T-705 and its de-fluoro analogue T-1105 as potent influenza virus inhibitors[J]. J Med Chem, 2018, 61(14):6193-6210.
doi: 10.1021/acs.jmedchem.8b00617 pmid: 29906392 |
[45] |
Pahnke K, Meier C. Synjournal of a bioreversibly masked lipophilic adenosine diphosphate ribose derivative[J]. Chembiochem, 2017, 18(16):1616-1626.
doi: 10.1002/cbic.201700232 URL |
[46] |
Gollnest T, de Oliveira TD, Schols D, et al. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals[J]. Nat Commun, 2015, 6:8716.
doi: 10.1038/ncomms9716 pmid: 26503889 |
[47] |
Meier C. Nucleoside diphosphate and triphosphate prodrugs - An unsolvable task?[J]. Antivir Chem Chemother, 2017, 25(3):69-82.
doi: 10.1177/2040206617738656 URL |
[48] |
Bonnaffé D, Dupraz B, Ughetto-Monfrin J, et al. Synjournal of acyl pyrophosphates. Application to the synjournal of nucleotide lipophilic prodrugs[J]. Tetrahedron Lett, 1995, 36(4):531-534.
doi: 10.1016/0040-4039(94)02322-3 URL |
[49] |
Kreimeyer A, Ughetto-Monfrin J, Namane A, et al. Synjournal of acylphosphates of purine ribonucleosides[J]. Tetrahedron Lett, 1996, 37(48):8739-8742.
doi: 10.1016/S0040-4039(96)02016-3 URL |
[50] |
Camarasa MJ. Prodrugs of nucleoside triphosphates as a sound and challenging approach:a pioneering work that opens a new era in the direct intracellular delivery of nucleoside triphosphates[J]. ChemMedChem, 2018, 13(18):1885-1889.
doi: 10.1002/cmdc.201800454 URL |
[51] |
Weising S, Sterrenberg V, Schols D, et al. Synjournal and antiviral evaluation of TriPPPro-AbacavirTP, TriPPPro-CarbovirTP, and their 1', 2'-Cis-disubstituted analogues[J]. ChemMedChem, 2018, 13(17):1771-1778.
doi: 10.1002/cmdc.201800361 pmid: 29943432 |
[52] |
Jia X, Schols D, Meier C. Anti-HIV-active nucleoside triphosphate prodrugs[J]. J Med Chem, 2020, 63(11):6003-6027.
doi: 10.1021/acs.jmedchem.0c00271 URL |
[53] |
Zhao CL, Jia X, Schols D, et al. Γ-non-symmetrically dimasked tri PPP ro prodrugs as potential antiviral agents against HIV[J]. ChemMedChem, 2021, 16(3):499-512.
doi: 10.1002/cmdc.v16.3 URL |
[54] |
Zhao CL, Weber S, Schols D, et al. Prodrugs of γ-alkyl-modified nucleoside triphosphates:improved inhibition of HIV reverse transcriptase[J]. Angew Chem Int Ed, 2020, 59(49):22063-22071.
doi: 10.1002/anie.v59.49 URL |
[55] |
Nack T, Dinis de Oliveira T, Weber S, et al. Γ-ketobenzyl-modified nucleoside triphosphate prodrugs as potential antivirals[J]. J Med Chem, 2020, 63(22):13745-13761.
doi: 10.1021/acs.jmedchem.0c01293 URL |
[1] | YAN Tao, CHEN Ke-ke, YANG Heng-fei, ZHU Jian-guo, XIA Jiu-xue, FANG Shu-guang. Study on Factors Affecting the Storage Survival Rates of Probiotic Bacteria Powder [J]. Biotechnology Bulletin, 2023, 39(4): 296-303. |
[2] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
[3] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[4] | YANG Jun-zhao, ZHANG Xin-rui, SUN Qing-yang, ZHENG Fei. Affecting Mechanism of Loop B3 on the Function of GH7 Endoglucanase [J]. Biotechnology Bulletin, 2023, 39(10): 281-291. |
[5] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[6] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[7] | ZHANG Chen, ZHANG Tong-tong, LIU Hai-ping. Screening and Identification of Ethylene-forming Enzymes with High Activity and Thermostability [J]. Biotechnology Bulletin, 2022, 38(11): 269-276. |
[8] | JIANG Di, XU Chun-cheng. Research Progress in the Succession of Microbial Communities in Total Mixed Ration Silage [J]. Biotechnology Bulletin, 2021, 37(9): 31-38. |
[9] | GAO Zhen-feng, ZHAO Jia. Study on Antifungal Properties of Fermentation Broth from Streptomyces albidoflavus G-1 and Optimization of Its Fermentation Condition [J]. Biotechnology Bulletin, 2021, 37(3): 53-64. |
[10] | CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution [J]. Biotechnology Bulletin, 2021, 37(3): 84-91. |
[11] | ZHENG Ye-zi, WANG Dan, PAN Mi, WANG Yan-ling, AN Li-jun. Isolation and Characterization of Two New GLABROUS1 Alleles in Arabidopsis [J]. Biotechnology Bulletin, 2021, 37(2): 15-23. |
[12] | YU Qin, MA Xian-yong, DENG Dun, WANG Yong-fei. Optimization of Indole-degrading Conditions in Pig Manure Waste Water by Enteroccus hirae IDO5 and Analysis of Its Corresponding Degradation Pathway [J]. Biotechnology Bulletin, 2021, 37(12): 113-123. |
[13] | TIAN Geng, GAO Wei-qiang, CHEN Xiao-bo, ZHANG Chun-xiao. Directed Mutagenesis of β-mannanase Gene from Bacillus licheniformis KD-1 for Improving Enzyme Activity and Stability [J]. Biotechnology Bulletin, 2021, 37(10): 100-109. |
[14] | WU Jiao, YU Gui-zhen, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Improvement on the Thermostability of Target Proteins by Fusing Rubredoxin from Hyperthermophile Pyrococcus furiosus [J]. Biotechnology Bulletin, 2021, 37(10): 110-119. |
[15] | WANG Xiao-fang, HOU Yu-gang, YANG Ke-ming, WANG Jia-ning, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Isolation of Specific Phage of Ralstonia solanacearum and Its Effects on Control of Soil-borne Bacterial Wilt Disease [J]. Biotechnology Bulletin, 2020, 36(9): 194-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||