[1] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147. [2] Jin HJ, Bae YK, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy[J]. Int J Mol Sci, 2013, 14(9):17986-8001. [3] Leu YW, Huang TH, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells[J]. Adv Exp Med Biol, 2013, 754:195-211. [4] Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532):1074-1080. [5] Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation[J]. PLoS One, 2011, 6(6):e20526. [6] Lu DF, Yao Y, Su ZZ, et al. Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment[J]. PLoS One, 2014, 9(4):e93222. [7] Fu Y, Zhang P, Ge J, et al. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity[J]. Int J Biochem Cell Biol, 2014, 54:68-77. [8] Yoon DS, Choi Y, Jang Y, et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells[J]. Stem Cells, 2014, 32(12):3219-3231. [9] Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin[J]. Embo Mol Med, 2013, 5(3):430-440. [10] Buhrmann C, Busch F, Shayan P, et al. Sirtuin-1(SIRT1)is required for promoting chondrogenic differentiation of mesenchymal stem cells[J]. J Biol Chem, 2014, 289(32):22048-22062. [11] Dong X, Pan R, Zhang H, et al. Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells[J]. PLoS One, 2013, 8(5):e63405. [12] Liu J, Wang Y, Wu Y, et al. Sodium butyrate promotes the differentiation of rat bone marrow mesenchymal stem cells to smooth muscle cells through histone acetylation[J]. PLoS One, 2014, 9(12):e116183. [13] Han B, Li J, Li Z, et al. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion[J]. PLoS One, 2013, 8(11):e81781. [14] Zych J, Stimamiglio MA, Senegaglia AC, et al. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells[J]. Braz J Med Biol Res, 2013, 46(5):405-416. [15] Hemming S, Cakouros D, Isenmann S, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification[J]. Stem Cells, 2014, 32(3):802-815. [16] Jo J, Song H, Park SG, et al. Regulation of differentiation potential of human mesenchymal stem cells by intracytoplasmic delivery of coactivator-associated arginine methyltransferase 1 protein using cell-penetrating peptide[J]. Stem Cells, 2012, 30(8):1703-1713. [17] Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling[J]. J Clin Invest, 2006, 116(5):1202-1209. [18] Zhou GS, Zhang XL, Wu JP, et al. 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation[J]. Cytotechnology, 2009, 60(1-3):11. [19] Hsiao SH, Lee KD, Hsu CC, et al. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination[J]. Biochem Biophys Res Commun, 2010, 400(3):305, 312. [20] Teng IW, Hou PC, Lee KD, et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells[J]. Cancer Res, 2011, 71(13):4653-4663. [21] Wang L, Li Z, Yu B, et al. Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2015, 456(1):459-464. [22] Zhu L, Xu PC. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013, 432(4):612, 617. [23] Wang L, Wang Y, Li Z, et al. Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. International Orthopaedics, 2015, 39(5):1013-1019. [24] Lee SY, Ham O, Cha MJ, et al. The promotion of cardiogenic differentiation of hMSCs by targeting epidermal growth factor receptor using microRNA-133a[J]. Biomaterials, 2013, 34(1):92, 99. [25] Cai B, Li J, Wang J, et al. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling[J]. Stem Cells, 2012, 30(8):1746-1755. [26] Han R, Kan Q, Sun Y, et al. MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521[J]. Neurosci Lett, 2012, 515(2):147-152. [27] Paik S, Jung HS, Lee S, et al. miR-449a regulates the chondrogenesis of human mesenchymal stem cells through direct targeting of lymphoid enhancer-binding factor-1[J]. Stem Cells Dev, 2012, 21(18):3298-3308. [28] Skarn M, Namlos HM, Noordhuis P, et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222[J]. Stem Cells Dev, 2012, 21(6):873-883. [29] Zhao QH, Wang SG, Liu SX, et al. PPARgamma forms a bridge between DNA methylation and histone acetylation at the C/EBPalpha gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells[J]. The FEBS journal, 2013, 280(22):5801-5814. [30] Aoyama T, Okamoto T, Fukiage K, et al. Histone modifiers, YY1 and p300, regulate the expression of cartilage-specific gene, chondromodulin-I, in mesenchymal stem cells[J]. J Biol Chem, 2010, 285(39):29842-29850. [31] 胡晓青, 张辛, 代岭辉, 等. 骨髓间充质干细胞成骨分化过程中Runx2的表观遗传学修饰[J]. 中国生物化学与分子生物学报, 2014(2):150-155. [32] Herlofsen SR, Bryne JC, Hoiby T, et al. Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells[J]. BMC Genomics, 2013, 14:105. [33] Tan J, Huang H, Huang W, et al. The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells[J]. J Genet Genomics, 2008, 35(10):585-593. [34] Tan J, Lu J, Huang W, et al. Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation[J]. PLoS One, 2009, 4(8):e6792. [35] Choi MR, In YH, Park J, et al. Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture[J]. Exp Mol Med, 2012, 44(8):503-512. [36] Eid JE, Garcia CB. Reprogramming of mesenchymal stem cells by oncogenes[J]. Semin Cancer Biol, 2015, 32:18-31. |