Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 17-21.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0358
Previous Articles Next Articles
HE Shuai, WANG Shu-hui, SUN Xiu-zhu
Received:
2018-04-14
Online:
2018-05-26
Published:
2018-06-07
HE Shuai, WANG Shu-hui, SUN Xiu-zhu. Probe into Application of CRISPR/Cas9 Technology in Epigenome[J]. Biotechnology Bulletin, 2018, 34(5): 17-21.
[1] Thompson S, Clarke AR, Pow AM, et al.Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells[J]. Cell, 1989, 56(2):313-321. [2] Urnov FD, Miller JC, Lee YL, et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 435(7042):646-651. [3] Nakajima K, Yaoita Y.Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus[J]. Biol Open, 2015, 4(3):259-266. [4] Shipman SL, Nivala J, Macklis JD, et al.CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663):345-349. [5] 周阳, 袁少飞, 蒋廷亚, 等. 基因组靶向修饰技术研究进展[J]. 生物学杂志, 2015, 32(5):70-75. [6] Sayeed SK, Zhao J, Sathyanarayana BK, et al.C/EBPβ(CEBPB)protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide[J]. Biochim Biophys Acta, 2015, 1849(6):583-589. [7] Salzler HR, Tatomer DC, Malek PY, et al.A sequence in the Drosophila H3-H4 promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs[J]. Dev Cell, 2013, 24(6):623-634. [8] Szulwach KE, Jin P.Integrating DNA methylation dynamics into a framework for understanding epigenetic codes[J]. Bioessays, 2014, 36(1):107-117. [9] Zhang C, Gao S, Molascon AJ, et al.Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features[J]. J Proteome Res, 2014, 13(7):3330-3337. [10] Gutschner T, H#x000e4;mmerle M, Eissmann M et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells[J]. Cancer Res, 2013, 73(3):1180-1189. [11] Young IT, Verbeek PW, Mayall BH.Characterization of chromatin distribution in cell nuclei[J]. Cytometry, 1986, 7(5):467-474. [12] Liyanage VR, Rastegar M.Rett syndrome and MeCP2[J]. Neuromolecular Med, 2014, 16(2):231-264. [13] Friez MJ, Brooks SS, Stevenson RE, et al.HUWE1 mutations in Juberg-Marsidi and Brooks syndromes:the results of an X-chromosome exome sequencing study[J]. BMJ Open, 2016, 6(4):e009537. [14] 庄涵虚, 马旭东, 赖亚栋, 等. RNA干扰沉默HDAC1基因对胃癌细胞增殖、凋亡、组蛋白乙酰化和甲基化的影响[J]. 南方医科大学学报, 2014, 34(2):246-250. [15] Matoba S, Liu Y, Lu F, et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 2014, 159(4):884-895. [16] Ma Y, Zhang L, Huang X.Genome modification by CRISPR/Cas9[J]. FEBS J, 2014, 281(23):5186-5193. [17] Miyaoka Y, Berman JR, Cooper SB, et al.Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing[J]. Sci Rep, 2016, 6:23549. [18] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [19] Renouf B, Piganeau M, Ghezraoui H, et al.Creating cancer translocations in human cells using Cas9 DSBs and nCas9 paired nicks[J]. Methods Enzymol, 2014, 546:251-271. [20] Ran FA, Hsu PD, Lin CY, et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154:1380-1389. [21] Kim S, Kim D, Cho SW, et al.Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 24:1012-1019. [22] Stefanska B, MacEwan DJ. Epigenetics and pharmacology[J]. Br J Pharmacol, 2015, 172(11):2701-2704. [23] Xu Y, Wu F, Tan L, et al.Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells[J]. Mol Cell, 2011, 42(4):451-464. [24] Vojta A, Dobrini#x00107; P, Tadi#x00107; V, et al.Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Research, 2016, 44(12):5615-5628. [25] de Esch CE, Ghazvini M, Loos F, et al. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation[J]. Stem Cell Reports. 2014, 3(4):548-555. [26] Liu XS, Wu H, Krzisch M, et al.Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene[J]. Cell, 2018, 172(5):979-992. [27] Urbach A, Bar-Nur O, Daley GQ, et al.Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells[J]. Cell Stem Cell, 2010, 6:407-411. [28] Ishihara K, Nakamoto M, Nakao M.DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling[J]. Hum Mol Genet, 2016, 5(24):5383-5394. [29] Rots MG, Jeltsch A.Editing the epigenome:overview, open questions, and directions of future development[J]. Methods Mol Biol, 2018, 1767:3-18. [30] Chen, B, Gilbert, LA, Cimini, BA, et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell[J]. 2013, 155:1479-1491. [31] Puchta H.Using CRISPR/Cas in three dimensions:towards synthetic plant genomes, transcriptomes and epigenomes[J]. Plant J, 2016, 87(1):5-15. [32] Danielson LS, Park DS, Rotllan N, et al.Cardiovascular dysregula-tion of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis[J]. FASEB J. 2013, 27(4):1460-1467. [33] Zhang Z, Ursin R, Mahapatra S, et al.CRISPR/CAS9 ablation of individual miRNAs from a miRNA family reveals their individual efficacies for regulating cardiac differentiation[J]. Mech Dev. 2018, 150:10-20. [34] Basak J, Nithin C.Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Front Plant Sci, 2015, 6:1001. [35] Jiang Q, Meng X, Meng L, et al.Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance[J]. RNA Biol, 2014, 11(10):1243-1249. [36] Cipolla GA.A non-canonical landscape of the microRNA system[J]. Front Genet, 2014, 5:337. [37] Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. [38] Huo W, Zhao G, Yin J, et al.Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells[J]. J Cancer, 2017, 8(1):57-64. [39] Ho TT, Zhou N, Huang J, et al.Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines[J]. Nucleic Acids Res, 2015, 43(3):e17. [40] Zhen S, Hua L, Liu YH, et al.Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer[J]. Oncotarget, 2017, 8(6):9634-9646. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[5] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[6] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[7] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[9] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[10] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[11] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[12] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[13] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[14] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[15] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||