Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 109-117.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.013
• Orginal Article • Previous Articles Next Articles
DING Li-na1, YANG Guo-xing2
Received:
2016-03-01
Online:
2016-10-25
Published:
2016-10-12
DING Li-na, YANG Guo-xing. Research Advances in the Mechanism and Signal Transduction of Plant Disease Resistance[J]. Biotechnology Bulletin, 2016, 32(10): 109-117.
[1] Chisholm ST, Coaker G, Day B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814. [2] Jones JD, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329. [3] Grant M, Lamb C. Systemic immunity[J]. Current Opinion in Plant Biology, 2006, 9(4):414-420. [4] Lee S, Rojas CM, Ishiga Y, et al. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens[J]. PLoS One, 2013, 8(12):e82445. [5] Bundó M, Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice[J]. Plant Biotechnology Journal, 2015, doi:10. 1111/pbi. 12500. [6] Martos GG, Terán Mdel M, Díaz Ricci JC. The defence elicitor AsES causes a rapid and transient membrane depolarization, a triphasic oxidative burst and the accumulation of nitric oxide[J]. Plant Physiology Biochemistry, 2015, 97:443-450. [7] Zhang Y, Li D, Zhang H, et al. Tomato histone H2B monoubiquitin-ation enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways[J]. BMC Plant Biology, 2015, 15:252. [8] 覃瀚仪, 李魏, 戴良英. 植物代谢产物在抗病反应中的功能研究进展[J]. 中国农学通报, 2015, 31(18):256-259. [9] 宗兆锋, 康振生. 植物病理学原理[M]. 北京:中国农业出版社, 2002:226-230. [10] Vaz Patto MC, Rubiales D. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species[J]. Frontiers in Plant Science, 2014, 5:618. [11] Keerthisinghe S, Nadeau JA, Lucas JR, et al. The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis[J]. Plant Journal, 2015, 81(5):684-694. [12] Abou-Attia MA, Wang X, Nashaat Al-Attala M, et al. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction[J]. Physiologia Plantarum, 2016, 156(3):262-277. [13] Shafiei R, Hang C, Kang JG, et al. Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina[J]. Molecular Plant Pathology, 2007, 8(6):773-784. [14] Suh SJ, Wang YF, Frelet A, et al. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells[J]. Journal of Biological Chemistry, 2007, 282(3):1916-1924. [15] Vargas P, Farias GA, Nogales J, et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system[J]. Environmental Microbiology Reports, 2013, 5(6):841-850. [16] Han Y, Zhang K, Yang J, et al. Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties[J]. BMC Genomics. 2015, 16(1):955. [17] Ding L, Xu H, Yi H, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6:e19008. [18] Cho MH, Lee SW. Phenolic phytoalexins in rice:biological functions and biosynthesis[J]. International Journal of Molecular Sciences, 2015, 16(12):29120-29133. [19] Yamamura C, Mizutani E, Okada K, et al. Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice[J]. Plant Journal, 2015,;84(6):1100-1113. [20] Schmelz EA, Kaplan F, Huffaker A, et al. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize[J]. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108(13):5455-4560. [21] de Wit PJ. How plants recognize pathogens and defend themselves[J]. Cellular and Molecular Life Sciences, 2007, 64(21):2726-2732. [22] Stam R, Mantelin S, McLellan H, et al. The role of effectors in nonhost resistance to filamentous plant pathogens[J]. Frontiers in Plant Science, 2014, 5:582. [23] Schoonbeek HJ, Wang HH, Stefanato FL, et al. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat[J]. New Phytologist, 2015, 206(2):606-613. [24] Kumar D, Kirti PB. Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut[J]. Plant Biotechnology Journal, 2015, 13(1):73-84. [25] Bentur JS, Rawat N, Divya D, et al. Rice-gall midge interactions:Battle for survival[J]. Journal of Insect Physiology, 2015, pii:S0022-1910(15)00198-5. [26] Durrant WE, Dong X. Systemic acquired resistance[J]. Annual Review of Phytopathology, 2004, 42:185-209. [27] Lee HJ, Park YJ, Seo PJ, et al. Systemic immunity requires SnRK2. 8-mediated nuclear import of NPR1 in Arabidopsis[J]. Plant Cell, 2015, 27(12):3425-3438. [28] Jaouannet M, Rodriguez PA, Thorpe P, et al. Plant immunity in plant-aphid interactions[J]. Frontiers in Plant Science, 2014, 5:663. [29] Strugala R, Delventhal R, Schaffrath U. An organ-specific view on non-host resistance[J]. Frontiers in Plant Science, 2015, 6:526. [30] Kang Z, Buchenauer H. Immunocytochemical localization of cell wall-bound thionins and hydroxyproline-rich glycoproteins in Fusarium culmorum-infected wheat spikes[J]. Journal of Phytopathology, 2003, 151(3):120-129. [31] Oh SK, Lee S, Chung E, et al. Insight into types I and II nonhost resistance using expression patterns of defense-related genes in tobacco[J]. Planta, 2006, 223(5):1101-1107. [32] Hückelhoven R. Powdery mildew susceptibility and biotrophic infection strategies[J]. FEMS Microbiology Letters, 2005, 245(1):9-17. [33] Ellis J. Insights into nonhost disease resistance:can they assist disease control in agriculture?[J]Plant Cell, 2006, 18(3):523-528. [34] Douchkov D, Lück S, Johrde A, et al. Discovery of genes affecting resistance of barley to adapted and non-adapted Powdery mildew fungi[J]. Genome Biology, 2014, 15(12):518. [35] Hiruma K, Takano Y. Roles of EDR1 in non-host resistance of Arabidopsis[J]. Plant Signaling & Behavior, 2011, 6(11):1831-1833. [36] Johansson ON, Fantozzi E, Fahlberg P, et al. Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana[J]. Plant Journal, 2014, 79(3):466-476. [37] Lipka U, Fuchs R, Lipka V. Arabidopsis non-host resistance to Powdery mildews[J]. Current Opinion in Plant Biology, 2008, 11(4):404-411. [38] Wen Y, Wang W, Feng J, et al. Identification and utilization of a sow thistle Powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):2117-2129. [39] Tuteja N, Mahajan S. Calcium signaling network in plants[J]. Plant Signaling & Behavior, 2007, 2(2):79-85. [40] Arnaud D, Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens[J]. Molecular Plant, 2015, 8(4):566-581. [41] Urquhart W, Gunawardena AH, Moeder W, et al. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca 2+ dependent manner[J]. Plant Molecular Biology, 2007, 65(6):747-761. [42] Beneloujaephajri E, Costa A, L'Haridon F, et al. 2013. Production of reactive oxygen species and wound-induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium[J]. BMC Plant Biology 13:160. [43] Ali R, Ma W, Lemtiri-Chlieh F, et al. Death don’t have no mercy and neither does calcium:Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity[J]. Plant Cell, 2007, 19(3):1081-1095. [44] Jeandroz S, Lamotte O, Astier J, et al. There's more to the picture than meets the eye:nitric oxide cross talk with Ca 2+ signaling[J]. Plant Physiology, 2013, 163:459-470. [45] Du L, Ali GS, Simons KA, et al. Ca 2+ /calmodulin regulates salicylic-acid-mediated plant immunity[J]. Nature, 2009, 457(7233):1154-1158. [46] Zhang L, Du L, Shen C, et al. Regulation of plant immunity through ubiquitin-mediated modulation of Ca 2+ -calmodulin-AtSR1/CAMTA3 signaling[J]. Plant Journal, 2014, 78(2):269-281. [47] Liu D, Wen J, Liu J, et al. The roles of free radicals in amyotrophic lateral sclerosis:reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids[J]. FASEB Journal, 1999, 13(15):2318-2328. [48] Ishibashi Y, Kasa S, Sakamoto M, et al. A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination[J]. PLoS One, 2015, 10(11):e0143173. [49] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Science, 2015, 6:1092. [50] Slesak I, Libik M, Karpinska B, et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses[J]. Acta Biochimica Polonica, 2007, 54(1):39-45. [51] Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance[J]. Plant Cell, 1996, 8:1809-1819. [52] Park SW, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science, 2007, 318(5847):113-116. [53] Chakravortty D, Kato Y, Sugiyama T, et al. The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW 267. 4 macrophage cells:a role of Raf-1 in lipopolysaccharide signaling[J]. Journal of Immunology, 2001, 166(3):2011-2017. [54] Massoud K, Barchietto T, Le Rudulier T, et al. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis[J]. Plant Physiology, 2012, 159(1):286-298. [55] Spoel SH, Mou Z, Tada Y, et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity[J]. Cell, 2009, 137(5):860-872. [56] Zhang X, Chen S, Mou Z. Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis[J]. Journal of Plant Physiology, 2009, 167(2):144-148. [57] Desveaux D, Maréchal A, Brisson N. Whirly transcription factors:defense gene regulation and beyond[J]. Trends in Plant Science, 2005, 10:95-102. [58] Shah J, Kachroo P, Klessig DF. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent[J]. Plant Cell, 1999, 11(2):191-206. [59] Yang YX, Ahammed GJ, Wu C, et al. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science, 2015, 16(5):450-461. [60] Pozo MJ, Van Der Ent S, Van Loon LC, et al. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana[J]. New Phytologist, 2008, 180(2):511-523. [61] Gaudet DA, Wang Y, Penniket C, et al. Morphological and molecular analyses of host and nonhost interactions involving barley and wheat and the covered smut pathogen Ustilago hordei[J]. Molecular Plant-Microbe Interactions, 2010, 23(12):1619-1634. [62] Yan L, Zhai Q, Wei J, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores[J]. PLoS Genetics, 2013, 9(12):e1003964. [63] Lorenzo O, Piqueras R, Sáanchez-Serrano JJ, et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell, 2003, 15(1):165-178. [64] Lorenzo O, Chico JM, Sáanchez-Serrano JJ, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16(7):1938-1950. [65] Zarate SI, Kempema LA, Walling LL, et al. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses[J]. Plant Physiology, 2007 143(2):866-875. [66] Penninckx IA, Thomma BP, Buchala A, et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis[J]. Plant Cell, 1998, 10(12):2103-2113. [67] Modolo LV, Cunha FQ, Braga MR, et al. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor[J]. Plant Physiology, 2002, 130(3):1288-1297. [68] Stefano MD, Ferrarini A, Delledonne M. Nitric oxide functions in the plant hypersensitive disease resistance response[J]. BMC Plant Biology, 2005, 5(Suppl 1):S10. [69] Asai S, Ohta K, Yoshioka H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana[J]. Plant Cell, 2008, 20(5):1390-1406. [70] Asai S, Mase K, Yoshioka H. Role of nitric oxide and reactive oxygen[corrected]species in disease resistance to necrotrophic pathogens[J]. Plant Signaling Behavior, 2010, 5(7):872-874. [71] Mur LA, Laarhoven LJ, Harren FJ, et al. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response[J]. Plant Physiology, 2008, 148(3):1537-1546. [72] Mason MG, Botella JR. Completing the heterotrimer:isolationand characterization of an Arabidopsis thaliana G protein γ-subunit cDNA[J]. Proceedings of the National Academy of Sciences USA, 2000, 97(36):14784-14788. [73] Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors[J]. Molecular Cell Biology, 2008, 9(1):60-71. [74] Steffens B, Sauter M. Heterotrimeric G protein signaling is required for epidermal cell death in rice[J]. Plant Physiology, 2009, 151(2):732-740. [75] Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, et al. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi[J]. Molecular Plant, 2012, 5(1):98-114. [76] Okamoto H, Göbel C, Capper RG, et al. The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2009, 60(7):1991-2003. [77] Ishikawa A. The Arabidopsis G-protein beta-subunit is required for defense response against Agrobacterium tumefaciens[J]. Bioscience, Biotechnology, & Biochemistry, 2009, 73(1):47-55. [78] Torres MA, Morales J, Sánchez-Rodríguez C, et al. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein[J]. Molecular Plant-Microbe Interactions, 2013, 26(6):686-694. [79] Liu J, Ding P, Sun T, et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases[J]. Plant Physiology, 2013, 161(4):2146-2158. |
[1] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[2] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[3] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[4] | LI Wen-jiao, ZHANG Zhong-feng, LIU Qing, SUN Jie, YANG Li, WANG Xing-jun, ZHAO Shu-zhen. Role of BRs in Plant Response to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(1): 228-235. |
[5] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
[6] | WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence [J]. Biotechnology Bulletin, 2021, 37(3): 144-152. |
[7] | HU Xiao-qian, ZHANG Ying-yi, LI Xin, YAN Hai-fang. Research Progress of Remorin Protein in Plants [J]. Biotechnology Bulletin, 2020, 36(8): 136-143. |
[8] | YANG Rui-jia, ZHANG Zhong-bao, WU Zhong-yi. Progress of the Structural and Functional Analysis of Plant Transcription Factor TIFY Protein Family [J]. Biotechnology Bulletin, 2020, 36(12): 121-128. |
[9] | YU Ming-xiang, SONG Shui-shan. Biological Functions of Protein Fatty Acylation in Plant Cells [J]. Biotechnology Bulletin, 2019, 35(8): 170-177. |
[10] | LIU Chang-yu, CHEN Xun, LONG Yu-qing, CHEN Ya, LIU Xiang-dan, ZHOU Ri-bao. Research Advances in Genes Involved in Ethylene Biosynthesis and Signal Transduction During Flower Senescence [J]. Biotechnology Bulletin, 2019, 35(3): 171-182. |
[11] | ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi. Research Progress on Plant AP2/ERF Transcription Factor Family [J]. Biotechnology Bulletin, 2018, 34(8): 1-7. |
[12] | FENG Han-qian, LI Chao. Research Advances of Auxin Signal Transduction [J]. Biotechnology Bulletin, 2018, 34(7): 24-30. |
[13] | ZHANG Yan, XIA Geng-shou, LAI Zhi-bing. Recent Advances in Molecular Mechanisms of Plant Responses Against Botrytis cinerea [J]. Biotechnology Bulletin, 2018, 34(2): 10-24. |
[14] | GUO Qian-qian, YANG Qian-qian, SONG Li-min, LIANG Wen-xing. The Research Progress of Protein Acetylation in Plant Pathology [J]. Biotechnology Bulletin, 2018, 34(2): 96-101. |
[15] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||