Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 97-108.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.010
• Orginal Article • Previous Articles Next Articles
LI Zhi-qiang,WANG Guo-liang,LIU Wen-de
Received:
2016-09-07
Online:
2016-10-25
Published:
2016-10-12
LI Zhi-qiang,WANG Guo-liang,LIU Wen-de. Recent Progress in Molecular Mechanism of Rice Disease Resistance[J]. Biotechnology Bulletin, 2016, 32(10): 97-108.
[1] Boller T, He C. Innate immunity in plants:An arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928):742-744. [2] Nakahara K, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity[J]. Current Opinion in Plant Biology, 2014, 20:88-95. [3] Zvereva A, Pooggin M. Silencing and innate immunity in plant defense against viral and non-viral pathogens[J]. Viruses, 2012, 4(11):2578-2597. [4] Liu W, Wang G. Plant innate immunity in rice:a defense against pathogen infection[J]. National Science Review, 2016. doi:10. 1093/nsr/nww015 [5] Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology, 2008, 20(1):10-16. [6] Shiu S, Karlowski W, Pan R, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. Plant Cell, 2004, 16(5):1220-1234. [7] Fritz-Laylin L, Jones J. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis 1[J]. Plant Physiology, 2005, 138(2):611-623. [8] Chen X, Ronald P. Innate immunity in rice[J]. Trends in Plant Science, 2011, 16(8):451-459. [9] Liu B, Li J, Ao Y, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J]. Plant Cell, 2012, 24(8):3406-3419. [10] Delphine C, Martin R, Thomas B, et al. The Arabidopsis receptor kinase fls2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476. [11] Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428(6984):764-767. [12] Shinya T, Osada T, Desaki Y, et al. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands[J]. Plant & Cell Physiology, 2010, 51(2):262-270. [13] Takai R, Isogai A, Takayama S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular Plant-Microbe Interactions, 2009, 21(12):1635-1642. [14] Akimoto K, Katakami H, Kim H, et al. Epigenetic inheritance in rice plants[J]. Annals of Botany, 2007, 100(2):205-217. [15] Song W, Wang G, Chen L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243):1804-1806. [16] Chen X, Chern M, Canlas P, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17):8029-8034. [17] Ying J, Chen X, Ding X, et al. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance[J]. Plant Journal, 2013, 73(5):814-823. [18] Park C, Peng Y, Chen X, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(11):1910-1926. [19] Peng Y, Bartley L, Chen X, et al. OsWRKY62 is a negative regulator of basal and Xa21 mediated defense against Xanthomonas oryzae pv. oryzae in Rice[J]. Molecular Plant, 2008, 1(3):446-458. [20] Wang Y, Pi L, Chen X, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. Plant Cell, 2006, 18(12):3635-3646. [21] Park C, Ronald PC. Cleavage and nuclear localization of the rice XA21 immune receptor[J]. Nature Communications, 2012, 3(2):177-180. [22] Park C, Sharma R, Lefebvre B, et al. The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice[J]. Plant Science, 2013, 210(9):53-60. [23] Xin L, Kapos P, Zhang Y. NLRs in plants[J]. Current Opinion in Immunology, 2015, 32:114-121. [24] Zhou T, Wang Y, Chen J, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J]. Molecular Genetics & Genomics, 2004, 271(4):402-415. [25] Chen L, Hamada S, Fujiwara M, et al. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J]. Cell Host & Microbe, 2010, 7(3):185-196. [26] Chen X, Shan J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant Journal for Cell & Molecular Biology, 2006, 46(5):794-804. [27] Fukuoka S, Saka N, Koga H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943):998-1001. [28] Nan J, Li Z, Wu J, et al. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson[J]. Rice, 2012, 5(1):1-7. [29] Zhu X, Shen C, Yang J, et al. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family[J]. Theoretical & Applied Genetics, 2012, 124(7):1295-1304. [30] Su J, Wang W, Han J, et al. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus[J]. Theoretical & Applied Genetics, 2015, 128(11):2213-2225. [31] Ma J, Lei C, Xu X, et al. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice[J]. Molecular Plant-Microbe Interactions, 2015, 28(5):558-568. [32] Hayashi N, Inoue H, Kato T, et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J]. Plant Journal for Cell & Molecular Biology, 2010, 64(3):498-510. [33] Zeng X, Yang X, Zhao Z, et al. Characterization and fine mapping of the rice blast resistance gene Pia[J]. Science China Life Sciences, 2011, 54(4):372-378. [34] Wang Z, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant Journal, 1999, 19(1):55-64. [35] Shang J, Tao Y, Chen X, et al. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes[J]. Genetics, 2009, 182(4):1303-1311. [36] Zhai C, Lin F, Dong Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011, 189(1):321-334. [37] Rai A, Kumar S, Gupta S, et al. Functional complementation of rice blast resistance gene Pi-k h(Pi54)conferring resistance to diverse strains of Magnaporthe oryzae[J]. Journal of Plant Biochemistry & Biotechnology, 2011, 20(20):55-65. [38] Ashikawa I, Hayashi N, Yamane H, et al. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180(4):2267-2276. [39] Yuan B, Zhai C, Wang W, et al. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes[J]. Theoretical & Applied Genetics, 2011, 122(122):1017-1028. [40] Takahashi A, Hayashi N, Miyao A, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. Bmc Plant Biology, 2010, 10(1):1-14. [41] Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter[J]. Plant Journal for Cell & Molecular Biology, 2009, 57(3):413-425. [42] Bryan G, Wu K, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11):2033-2046. [43] Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11):1216-1228. [44] Hua L, Wu J, Chen C, et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast[J]. Theoretical & Applied Genetics, 2012, 125(5):1047-1055. [45] Lee S, Song M, Seo Y, et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes[J]. Genetics, 2009, 181(4):1627-1638. [46] Qu S, Liu G, Bellizzi M, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3):1901-1914. [47] Jie C, Liu W, Zhuang J, et al. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae[J]. Journal of Genetics & Genomics, 2011, 38(5):209-216. [48] Fukuoka S, Yamamoto S, Mizobuchi R, et al. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast[J]. Scientific Reports, 2014, 4:4450. [49] Liu X, Lin F, Wang L, et al. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4):2541-2549. [50] Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3):1871-1880. [51] Liu Y, Liu B, Zhu X, et al. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice[J]. Theoretical & Applied Genetics, 2013, 126(4):985-998. [52] Cesari S, Thilliez G, Ribot C, et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding[J]. Plant Cell, 2013, 25(4):1463-1481. [53] Lyer-Pascuzzi A, Mccouch S. Genetic and functional characteriza-tion of the rice bacterial blight disease resistance gene xa5[J]. Phytopathology, 2008, 98:289-295. [54] Yuan M, Chu Z, Li X, et al. Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice[J]. Plant & Cell Physiology, 2009, 50(5):947-955. [55] Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant Cell & Environment, 2011, 34(11):1958-1969. [56] Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant Journal, 2004, 37:517-527. [57] Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26[J]. Tag Theoretical & Applied Genetics. theoretische Und Angewandte Genetik, 2006, 113(7):1347-1355. [58] Gu K, Yang B, Tian D, et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005, 435(7045):1122-1125. [59] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668. [60] Tian D, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum[J]. Plant Cell, 2014, 26(1):497-515. [61] Wang C, Zhang X, Fan Y, et al. XA23 Is an executor r protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015, 8(2):290-302. [62] Park C, Chen S, Shirsekar G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. Plant Cell, 2012, 24(11):4748-4762. [63] Hogenhout S, Hoorn R, Terauchi R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular plant-microbe interactions:MPMI, 2009, 22(2):115-122. [64] Wu J, Kou Y, Bao J, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015, 206(4):1463-1475. [65] Chan H, Shirsekar G, Bellizzi M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice[J]. Plos Pathogens, 2016, 12(3):e1005529. [66] Yang DL, Yang YN, He ZH, et al. Roles of plant hormones and their interplay in rice immunity[J]. Molecular Plant, 2013, 6(3):675-685. [67] Bari R, Jones J. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4):473-488. [68] Chen Z, Iyer S, Caplan A, et al. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues[J]. Plant Physiology, 1997, 114(1):193-201. [69] Silverman P, Seskar M, Kanter D, et al. Salicylic acid in rice(biosynthesis, conjugation, and possible role)[J]. Plant Physiology, 1995, 108(2):633-639. [70] Ganesan V, Thomas G. Salicylic acid response in rice:influence of salicylic acid on H 2 O 2 accumulation and oxidative stress[J]. Plant Science An International Journal of Experimental Plant Biology, 2001, 160(6):1095-1106. [71] Bart R, Chern M, Vegasánchez M, et al. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae[J]. Plos Genetics, 2010, 6(9):110-117. [72] Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19(6):2064-2076. [73] Mei C, Qi M, Sheng G, et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Molecular plant-microbe interactions:MPMI, 2006, 19(10):1127-1137. [74] Patkar R, Benke P, Qu Z, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity[J]. Nature Chemical Biology, 2015, 11(9):733-740. [75] Liu Q, Chen Y, Pan H, et al. Emerging connections in the ethylene signaling network[J]. Trends in Plant Science, 2009, 14(5):270-279. [76] Broekaert W, Delauré S, Bolle M, et al. The role of ethylene in host-pathogen interactions[J]. Annual Review of Phytopathology, 2006, 44:393-416. [77] Loon L, Geraats B, Linthorst H. Ethylene as a modulator of disease resistance in plants[J]. Trends in Plant Science, 2006, 11(4):184-191. [78] Singh M, Lee F, Counce P, et al. Mediation of partial resistance to rice blast through anaerobic induction of ethylene[J]. Phytopathology, 2004, 94(8):819-825. [79] Iwai T, Miyasaka A, Seo S, et al. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology, 2006, 142(3):1202-1215. [80] Helliwell E, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2013, 11(1):33-42. [81] Zhu S, Gao F, Cao X, et al. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms[J]. Plant Physiology, 2005, 139(4):1935-1945. [82] Qin X, Liu J, Zhao W, et al. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice[J]. Molecular plant-microbe interactions:MPMI, 2013, 26(2):227-239. [83] Kim T, Wang Z. Brassinosteroid signal transduction from receptor kinases to transcription factors[J]. Annual Review of Plant Biology, 2010, 61(4):681-704. [84] 高静, 张昊, 王凤茹, 等. 油菜素内酯提高水稻抗病性的分子机制[J]. 植物保护学报, 2016, 43(2):347-348. [85] Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5):929-938. [86] Jia L, Wen J, Lease K, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222. [87] He Z, Wang Z, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1[J]. Science, 2000, 288(5475):2360-2363. [88] Vleesschauwer D, Buyten E, Satoh K, et al. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice[J]. Plant Physiology, 2012, 158(4):1833-1846. [89] Hamon M, Cossart P. Histone modifications and chromatin remodeling during bacterial infections[J]. Cell Host & Microbe, 2008, 4(2):100-109. [90] Ma K, Flores C, Ma W. Chromatin configuration as a battlefield in plant-bacteria interactions[J]. Plant Physiology, 2011, 157(2):535-543. [91] Ding B, Bellizzi M, Ning Y, et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. Plant Cell, 2012, 24(9):3783-3794. [92] Rao Y, Li Y, Qian Q. Recent progress on molecular breeding of rice in China[J]. Plant Cell Reports, 2014, 33(4):551-564. [93] 何峰, 张浩, 刘金灵, 等. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8):756-765. [94] 马军韬, 张国民, 辛爱华, 等. 水稻品种抗稻瘟病分析及基因聚合抗性改良[J]. 植物保护学报, 2016, 43(2):177-183. [95] Zheng Y. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1):32-39. [96] Kump K, Bradbury P, Wisser R, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature Genetics, 2011, 43(2):163-168. [97] Kang H, Zhang Y, Wang Y, et al. Molecular Dissection of the Complex Genetic Architecture of Rice Immunity to the Blast Fungus Magnaporthe oryzae using GWAS[C]. Jeju, Korea:International Plant and Animal Genome Conference, 2013. [98] Li T, Liu B, Spalding M, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nature Biotechnology, 2012, 30(5):390-392. [99] Pennisi E. The CRISPR craze[J]. Science, 2013, 341(6148):833-836. [100] Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951. [101] Feng G, Xiao Z, Feng J, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nature Biotechnology, 2016, 34(7):768-773. [102] Gonsalves D. Control of papaya ringspot virus in papaya:a case study[J]. Annual Review of Phytopathology, 1998, 36(1):415-437. [103] Nowara D, Gay A, Lacomme C, et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010, 22(9):3130-3141. [104] Nunes C, Dean R. Host-induced gene silencing:a tool for understanding fungal host interaction and for developing novel disease control strategies[J]. Molecular Plant Pathology, 2012, 13(5):519-529. [105] 邹德堂, 姜思达, 赵宏伟, 等. 广谱抗性基因Pi9在黑龙江省水稻品种中的分布[J]. 东北农业大学学报, 2016, 47(7):1-8. [106] 马建, 马小定, 赵志超, 等. 水稻抗稻瘟病基因Pi35 功能性分子标记的开发及其应用[J]. 作物学报, 2015, 41(12):1779-1790. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[6] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[7] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[8] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[9] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[10] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[11] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[12] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[13] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[14] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[15] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||