[1] 李杨瑞, 杨丽涛. 20世纪90年代以来我国甘蔗产业和科技的新发展[J]. 西南农业学报, 2009, 22(5):1469-1476. [2] 黄海荣, Bokhtiar SM, 徐林, 等. 硅肥对甘蔗光合特性和产量的影响[J]. 广西农业科学, 2009(12):1564-1569. [3] 蒋雄英, 陈桂芬, 尹辉, 等. 硅肥对甘蔗的生长、产量和品质的影响[J]. 西南农业学报, 2014(6):2460-2464. [4] 黄海荣, 徐林, Bokhtiar SM, 等. 硅肥对蔗地土壤性状、甘蔗叶片营养及产量的影响[J]. 南方农业学报, 2011, 42(7):756-759. [5] Sanmiya K, Suzuki K, Egawa Y, et al. Mitochondrial small heat-shock protein enhances thermo tolerance in tobacco plants[J]. PEBS Lett, 2004, 557(1-3):265-268. [6] Maimbo M, Ohnishi K, Hikichi Y, et al. Induction of a small heat shock protein and its functional roles in nicotiana plants in the defense Response against Ralstonia solanacearum[J]. Plant Physiology, 2014, 145(4):1588-1599. [7] Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs[J]. Plant Mol Biology, 1992(19):781-792. [8] Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7[J]. Plant Cell Reports, 2008, 27(2):329-334. [9] Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance[J]. Plant Physiology, 2000, 122(4):1099-1108. [10] 孙爱清, 葛淑娟, 董伟, 等. 玉米小分子热激蛋白ZmHSP17. 7基因的克隆与功能分析[J]. 作物学报, 2015(3):414-421. [11] 李翠, 侯蕾, 任丽, 等. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析[J]. 山东农业科学, 2015(4):1-7. [12] CAN Van Toan, 罗聪, 董龙, 等. 杧果低分子量热激蛋白基因MiHSP17. 6的克隆及表达分析[J]. 园艺学报, 2014(12):2383-2392. [13] 安艳秋, 蔺瑞明, 冯晶, 等. 小麦热激蛋白基因TaHSP70克隆及其在植物防卫和抗逆反应中的表达分析[J]. 分子植物育种, 2011(4):402-409. [14] 李德军, 郭会娜, 邓治, 等. 巴西橡胶树sHSP23. 8基因的克隆、生物信息学及表达分析[J]. 植物生理学报, 2015(11):1955-1962. [15] 栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白的研究进展[J]. 生物技术通报, 2016, 32(2):7-13. [16] Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses:Role of heat shock proteins(HSP)[J]. Journal of Proteomics, 2008, 71(4):391-411. [17] Al-Whaibi MH. Plant heat-shock proteins:a mini review[J]. Journal of King Saud University-Science, 2011, 23(2):139-150. [18] Park HS, Cho SG, Kim CK, et al. Heat shock protein HSP72 is a negative regulator of apoptosis signal regulating kinase 1[J]. Mol Cell Biol, 2002, 22(22):7721-7730. [19] Abravaya K, Phillips B, Morimoto RI. Heat shock-induced interactions of heat shock transcription factor and the human HSP70 promoter examined by in vivo footprinting[J]. Mol Cell Biol, 1991, 11(1):586-592. [20] Waters ER. The evolution, function, structure, and expression of the plant sHSPs[J]. Journal of Experimental Botany, 2013, 64(2):391-403. [21] Hilton GR, Lioe H, Stengel F, et al. Small heat-shock proteins:paramedics of the cell[J]. Topics in Current Chemistry, 2013(328):69-98. [22] 江泽普, 廖青, 韦广泼, 等. 硅磷互作对甘蔗生长及产量效应研究[J]. 南方农业学报, 2011, 42(9):1091-1095. [24] Sanmiya K, Suzuki K, Egawa Y, et al. Mitochondrial small heat-shock protein enhances thermo tolerance in tobacco plants[J]. PEBS Lett, 2004, 557(1-3):265-268. [23] 曾宪录, 梁计南, 谭中文. 硅肥对甘蔗叶片一些光合特性的影响[J]. 华中农业大学学报, 2007, 26(3):330-334. [25] Low D, Brandle K, Nover L, et al. Cytosolic heat-stress proteins HSP17. 7 class 1and HSP17. 3 class 11 of tomato act as molecular chaperones in vivo[J]. Planta, 2000, 211(4):575-582. [26] Heekathom SA, Downs CA, Sharkey TD, et al. The small methionine-rich chloroplast heat-shock protein protest photosystem Ⅱ electron transport during heat stress[J]. Plant Physiol, 1998, 116(l):439-444. [27] Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Current Opinion in Plant Biology, 2005, 8(1):86-92. |